Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 14
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Guerin
2
64 kgZoidl
3
63 kgDavies
4
66 kgSchelling
5
66 kgReutimann
6
71 kgRogina
7
70 kgLoubet
11
66 kgCosta
12
61 kgHonkisz
13
61 kgHoelgaard
15
74 kgSeigle
16
63 kgBarta
17
61 kgKnox
18
58 kgRutkiewicz
19
66 kgHagen
20
65 kgLe Roux
21
59 kgKamp
22
74 kgMasson
24
68 kgSeynaeve
26
67 kg
2
64 kgZoidl
3
63 kgDavies
4
66 kgSchelling
5
66 kgReutimann
6
71 kgRogina
7
70 kgLoubet
11
66 kgCosta
12
61 kgHonkisz
13
61 kgHoelgaard
15
74 kgSeigle
16
63 kgBarta
17
61 kgKnox
18
58 kgRutkiewicz
19
66 kgHagen
20
65 kgLe Roux
21
59 kgKamp
22
74 kgMasson
24
68 kgSeynaeve
26
67 kg
Weight (KG) →
Result →
74
58
2
26
# | Rider | Weight (KG) |
---|---|---|
2 | GUERIN Alexis | 64 |
3 | ZOIDL Riccardo | 63 |
4 | DAVIES Scott | 66 |
5 | SCHELLING Ide | 66 |
6 | REUTIMANN Matthias | 71 |
7 | ROGINA Radoslav | 70 |
11 | LOUBET Julien | 66 |
12 | COSTA Adrien | 61 |
13 | HONKISZ Adrian | 61 |
15 | HOELGAARD Markus | 74 |
16 | SEIGLE Romain | 63 |
17 | BARTA Will | 61 |
18 | KNOX James | 58 |
19 | RUTKIEWICZ Marek | 66 |
20 | HAGEN Carl Fredrik | 65 |
21 | LE ROUX Romain | 59 |
22 | KAMP Alexander | 74 |
24 | MASSON Christophe | 68 |
26 | SEYNAEVE Lander | 67 |