Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 29
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Van Asbroeck
1
72 kgHagen
2
65 kgSchillinger
3
72 kgMoscon
4
71 kgHoward
5
72 kgBrammeier
6
72 kgDe Vreese
8
78 kgReynés
10
69 kgClement
11
66 kgThomson
12
75 kgRast
13
80 kgOss
14
75 kgHenao
15
57 kgDe Tier
16
60 kgMarcato
17
67 kgWegmann
18
60 kgGatto
20
67 kgHollenstein
21
80 kgMoinard
22
69 kgDomagalski
23
77 kgCam
24
61 kgDe Ketele
25
66 kg
1
72 kgHagen
2
65 kgSchillinger
3
72 kgMoscon
4
71 kgHoward
5
72 kgBrammeier
6
72 kgDe Vreese
8
78 kgReynés
10
69 kgClement
11
66 kgThomson
12
75 kgRast
13
80 kgOss
14
75 kgHenao
15
57 kgDe Tier
16
60 kgMarcato
17
67 kgWegmann
18
60 kgGatto
20
67 kgHollenstein
21
80 kgMoinard
22
69 kgDomagalski
23
77 kgCam
24
61 kgDe Ketele
25
66 kg
Weight (KG) →
Result →
80
57
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | VAN ASBROECK Tom | 72 |
2 | HAGEN Carl Fredrik | 65 |
3 | SCHILLINGER Andreas | 72 |
4 | MOSCON Gianni | 71 |
5 | HOWARD Leigh | 72 |
6 | BRAMMEIER Matt | 72 |
8 | DE VREESE Laurens | 78 |
10 | REYNÉS Vicente | 69 |
11 | CLEMENT Stef | 66 |
12 | THOMSON Jay Robert | 75 |
13 | RAST Grégory | 80 |
14 | OSS Daniel | 75 |
15 | HENAO Sebastián | 57 |
16 | DE TIER Floris | 60 |
17 | MARCATO Marco | 67 |
18 | WEGMANN Fabian | 60 |
20 | GATTO Oscar | 67 |
21 | HOLLENSTEIN Reto | 80 |
22 | MOINARD Amaël | 69 |
23 | DOMAGALSKI Karol | 77 |
24 | CAM Maxime | 61 |
25 | DE KETELE Kenny | 66 |