Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 28
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Kannemeyer
1
67 kgGeorge
2
61 kgPoitschke
4
73 kgMcLeod
5
66 kgKopp
8
68 kgHeppner
9
69 kgCox
11
62 kgGrabsch
12
81 kgBrożyna
21
65 kgRoberts
27
71 kgGlasner
29
72 kgO'Loughlin
36
68 kgWacker
38
65 kgHuzarski
39
69 kgDa Dalto
41
72 kgPriamo
47
72 kgMcCann
48
73 kgImpey
52
72 kgChmielewski
57
72 kgCraven
59
75 kgPontoni
69
58 kgHeymans
70
65 kgVan Der Berg
71
68 kg
1
67 kgGeorge
2
61 kgPoitschke
4
73 kgMcLeod
5
66 kgKopp
8
68 kgHeppner
9
69 kgCox
11
62 kgGrabsch
12
81 kgBrożyna
21
65 kgRoberts
27
71 kgGlasner
29
72 kgO'Loughlin
36
68 kgWacker
38
65 kgHuzarski
39
69 kgDa Dalto
41
72 kgPriamo
47
72 kgMcCann
48
73 kgImpey
52
72 kgChmielewski
57
72 kgCraven
59
75 kgPontoni
69
58 kgHeymans
70
65 kgVan Der Berg
71
68 kg
Weight (KG) →
Result →
81
58
1
71
# | Rider | Weight (KG) |
---|---|---|
1 | KANNEMEYER Tiaan | 67 |
2 | GEORGE David | 61 |
4 | POITSCHKE Enrico | 73 |
5 | MCLEOD Ian | 66 |
8 | KOPP David | 68 |
9 | HEPPNER Jens | 69 |
11 | COX Ryan | 62 |
12 | GRABSCH Ralf | 81 |
21 | BROŻYNA Tomasz | 65 |
27 | ROBERTS Luke | 71 |
29 | GLASNER Björn | 72 |
36 | O'LOUGHLIN David | 68 |
38 | WACKER Eugen | 65 |
39 | HUZARSKI Bartosz | 69 |
41 | DA DALTO Mauro | 72 |
47 | PRIAMO Matteo | 72 |
48 | MCCANN David | 73 |
52 | IMPEY Daryl | 72 |
57 | CHMIELEWSKI Piotr | 72 |
59 | CRAVEN Dan | 75 |
69 | PONTONI Daniele | 58 |
70 | HEYMANS Mannie | 65 |
71 | VAN DER BERG Johan | 68 |