Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.9 * weight - 36
This means that on average for every extra kilogram weight a rider loses 0.9 positions in the result.
Kopp
1
68 kgGlasner
4
72 kgPoitschke
5
73 kgGeorge
6
61 kgImpey
9
72 kgPontoni
11
58 kgChmielewski
13
72 kgCox
14
62 kgRetschke
15
66 kgMcLeod
17
66 kgGrabsch
19
81 kgKannemeyer
20
67 kgBrożyna
22
65 kgMcCann
25
73 kgHeppner
26
69 kgHuzarski
27
69 kgWacker
34
65 kgDa Dalto
35
72 kgVan Der Berg
50
68 kgRoberts
51
71 kgO'Loughlin
52
68 kgHeymans
53
65 kgPriamo
72
72 kgCraven
75
75 kg
1
68 kgGlasner
4
72 kgPoitschke
5
73 kgGeorge
6
61 kgImpey
9
72 kgPontoni
11
58 kgChmielewski
13
72 kgCox
14
62 kgRetschke
15
66 kgMcLeod
17
66 kgGrabsch
19
81 kgKannemeyer
20
67 kgBrożyna
22
65 kgMcCann
25
73 kgHeppner
26
69 kgHuzarski
27
69 kgWacker
34
65 kgDa Dalto
35
72 kgVan Der Berg
50
68 kgRoberts
51
71 kgO'Loughlin
52
68 kgHeymans
53
65 kgPriamo
72
72 kgCraven
75
75 kg
Weight (KG) →
Result →
81
58
1
75
# | Rider | Weight (KG) |
---|---|---|
1 | KOPP David | 68 |
4 | GLASNER Björn | 72 |
5 | POITSCHKE Enrico | 73 |
6 | GEORGE David | 61 |
9 | IMPEY Daryl | 72 |
11 | PONTONI Daniele | 58 |
13 | CHMIELEWSKI Piotr | 72 |
14 | COX Ryan | 62 |
15 | RETSCHKE Robert | 66 |
17 | MCLEOD Ian | 66 |
19 | GRABSCH Ralf | 81 |
20 | KANNEMEYER Tiaan | 67 |
22 | BROŻYNA Tomasz | 65 |
25 | MCCANN David | 73 |
26 | HEPPNER Jens | 69 |
27 | HUZARSKI Bartosz | 69 |
34 | WACKER Eugen | 65 |
35 | DA DALTO Mauro | 72 |
50 | VAN DER BERG Johan | 68 |
51 | ROBERTS Luke | 71 |
52 | O'LOUGHLIN David | 68 |
53 | HEYMANS Mannie | 65 |
72 | PRIAMO Matteo | 72 |
75 | CRAVEN Dan | 75 |