Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 29
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Kopp
2
68 kgPoitschke
3
73 kgImpey
4
72 kgPontoni
7
58 kgRoberts
9
71 kgRetschke
12
66 kgMcLeod
16
66 kgPriamo
17
72 kgKannemeyer
18
67 kgWacker
19
65 kgGrabsch
20
81 kgDa Dalto
25
72 kgO'Loughlin
33
68 kgBrożyna
35
65 kgCox
36
62 kgHeppner
41
69 kgChmielewski
48
72 kgGeorge
53
61 kgGlasner
54
72 kgMcCann
60
73 kgCraven
63
75 kgVan Der Berg
68
68 kgHuzarski
69
69 kgHeymans
76
65 kg
2
68 kgPoitschke
3
73 kgImpey
4
72 kgPontoni
7
58 kgRoberts
9
71 kgRetschke
12
66 kgMcLeod
16
66 kgPriamo
17
72 kgKannemeyer
18
67 kgWacker
19
65 kgGrabsch
20
81 kgDa Dalto
25
72 kgO'Loughlin
33
68 kgBrożyna
35
65 kgCox
36
62 kgHeppner
41
69 kgChmielewski
48
72 kgGeorge
53
61 kgGlasner
54
72 kgMcCann
60
73 kgCraven
63
75 kgVan Der Berg
68
68 kgHuzarski
69
69 kgHeymans
76
65 kg
Weight (KG) →
Result →
81
58
2
76
# | Rider | Weight (KG) |
---|---|---|
2 | KOPP David | 68 |
3 | POITSCHKE Enrico | 73 |
4 | IMPEY Daryl | 72 |
7 | PONTONI Daniele | 58 |
9 | ROBERTS Luke | 71 |
12 | RETSCHKE Robert | 66 |
16 | MCLEOD Ian | 66 |
17 | PRIAMO Matteo | 72 |
18 | KANNEMEYER Tiaan | 67 |
19 | WACKER Eugen | 65 |
20 | GRABSCH Ralf | 81 |
25 | DA DALTO Mauro | 72 |
33 | O'LOUGHLIN David | 68 |
35 | BROŻYNA Tomasz | 65 |
36 | COX Ryan | 62 |
41 | HEPPNER Jens | 69 |
48 | CHMIELEWSKI Piotr | 72 |
53 | GEORGE David | 61 |
54 | GLASNER Björn | 72 |
60 | MCCANN David | 73 |
63 | CRAVEN Dan | 75 |
68 | VAN DER BERG Johan | 68 |
69 | HUZARSKI Bartosz | 69 |
76 | HEYMANS Mannie | 65 |