Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.9 * weight - 36
This means that on average for every extra kilogram weight a rider loses 0.9 positions in the result.
Cox
1
62 kgGeorge
2
61 kgKannemeyer
6
67 kgBrożyna
10
65 kgMcLeod
11
66 kgHeppner
12
69 kgChmielewski
13
72 kgImpey
15
72 kgGrabsch
17
81 kgKopp
19
68 kgWacker
20
65 kgRoberts
21
71 kgGlasner
28
72 kgHuzarski
30
69 kgRetschke
32
66 kgPontoni
34
58 kgPoitschke
38
73 kgDa Dalto
40
72 kgO'Loughlin
43
68 kgVan Der Berg
44
68 kgMcCann
47
73 kgCraven
56
75 kgPriamo
59
72 kgHeymans
66
65 kg
1
62 kgGeorge
2
61 kgKannemeyer
6
67 kgBrożyna
10
65 kgMcLeod
11
66 kgHeppner
12
69 kgChmielewski
13
72 kgImpey
15
72 kgGrabsch
17
81 kgKopp
19
68 kgWacker
20
65 kgRoberts
21
71 kgGlasner
28
72 kgHuzarski
30
69 kgRetschke
32
66 kgPontoni
34
58 kgPoitschke
38
73 kgDa Dalto
40
72 kgO'Loughlin
43
68 kgVan Der Berg
44
68 kgMcCann
47
73 kgCraven
56
75 kgPriamo
59
72 kgHeymans
66
65 kg
Weight (KG) →
Result →
81
58
1
66
# | Rider | Weight (KG) |
---|---|---|
1 | COX Ryan | 62 |
2 | GEORGE David | 61 |
6 | KANNEMEYER Tiaan | 67 |
10 | BROŻYNA Tomasz | 65 |
11 | MCLEOD Ian | 66 |
12 | HEPPNER Jens | 69 |
13 | CHMIELEWSKI Piotr | 72 |
15 | IMPEY Daryl | 72 |
17 | GRABSCH Ralf | 81 |
19 | KOPP David | 68 |
20 | WACKER Eugen | 65 |
21 | ROBERTS Luke | 71 |
28 | GLASNER Björn | 72 |
30 | HUZARSKI Bartosz | 69 |
32 | RETSCHKE Robert | 66 |
34 | PONTONI Daniele | 58 |
38 | POITSCHKE Enrico | 73 |
40 | DA DALTO Mauro | 72 |
43 | O'LOUGHLIN David | 68 |
44 | VAN DER BERG Johan | 68 |
47 | MCCANN David | 73 |
56 | CRAVEN Dan | 75 |
59 | PRIAMO Matteo | 72 |
66 | HEYMANS Mannie | 65 |