Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1.8 * weight - 84
This means that on average for every extra kilogram weight a rider loses 1.8 positions in the result.
Impey
1
72 kgPontoni
4
58 kgCox
5
62 kgRetschke
7
66 kgGeorge
8
61 kgGlasner
11
72 kgKannemeyer
15
67 kgPriamo
16
72 kgCraven
17
75 kgVan Der Berg
23
68 kgKopp
30
68 kgMcCann
31
73 kgHuzarski
38
69 kgHeymans
48
65 kgChmielewski
55
72 kgBrożyna
56
65 kgMcLeod
59
66 kgWacker
61
65 kgRoberts
62
71 kgHeppner
63
69 kgPoitschke
66
73 kgDa Dalto
67
72 kgO'Loughlin
70
68 kgGrabsch
72
81 kg
1
72 kgPontoni
4
58 kgCox
5
62 kgRetschke
7
66 kgGeorge
8
61 kgGlasner
11
72 kgKannemeyer
15
67 kgPriamo
16
72 kgCraven
17
75 kgVan Der Berg
23
68 kgKopp
30
68 kgMcCann
31
73 kgHuzarski
38
69 kgHeymans
48
65 kgChmielewski
55
72 kgBrożyna
56
65 kgMcLeod
59
66 kgWacker
61
65 kgRoberts
62
71 kgHeppner
63
69 kgPoitschke
66
73 kgDa Dalto
67
72 kgO'Loughlin
70
68 kgGrabsch
72
81 kg
Weight (KG) →
Result →
81
58
1
72
# | Rider | Weight (KG) |
---|---|---|
1 | IMPEY Daryl | 72 |
4 | PONTONI Daniele | 58 |
5 | COX Ryan | 62 |
7 | RETSCHKE Robert | 66 |
8 | GEORGE David | 61 |
11 | GLASNER Björn | 72 |
15 | KANNEMEYER Tiaan | 67 |
16 | PRIAMO Matteo | 72 |
17 | CRAVEN Dan | 75 |
23 | VAN DER BERG Johan | 68 |
30 | KOPP David | 68 |
31 | MCCANN David | 73 |
38 | HUZARSKI Bartosz | 69 |
48 | HEYMANS Mannie | 65 |
55 | CHMIELEWSKI Piotr | 72 |
56 | BROŻYNA Tomasz | 65 |
59 | MCLEOD Ian | 66 |
61 | WACKER Eugen | 65 |
62 | ROBERTS Luke | 71 |
63 | HEPPNER Jens | 69 |
66 | POITSCHKE Enrico | 73 |
67 | DA DALTO Mauro | 72 |
70 | O'LOUGHLIN David | 68 |
72 | GRABSCH Ralf | 81 |