Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight + 21
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Couzens
2
59 kgSchweinberger
3
63 kgWilliams
4
66 kgPeeters
18
54 kgBertizzolo
20
54 kgSels
25
65 kgKorevaar
26
59 kgColes-Lyster
27
61 kgTacey
29
62 kgBroughton
30
60 kgMaribo
31
60 kgGreenwood
39
60 kgVerdonschot
44
52 kgKasper
50
59 kgCastrique
59
63 kgBastiaenssen
66
62 kgStultiens
68
58 kgBeuling
73
65 kg
2
59 kgSchweinberger
3
63 kgWilliams
4
66 kgPeeters
18
54 kgBertizzolo
20
54 kgSels
25
65 kgKorevaar
26
59 kgColes-Lyster
27
61 kgTacey
29
62 kgBroughton
30
60 kgMaribo
31
60 kgGreenwood
39
60 kgVerdonschot
44
52 kgKasper
50
59 kgCastrique
59
63 kgBastiaenssen
66
62 kgStultiens
68
58 kgBeuling
73
65 kg
Weight (KG) →
Result →
66
52
2
73
# | Rider | Weight (KG) |
---|---|---|
2 | COUZENS Millie | 59 |
3 | SCHWEINBERGER Kathrin | 63 |
4 | WILLIAMS Lily | 66 |
18 | PEETERS Jinse | 54 |
20 | BERTIZZOLO Sofia | 54 |
25 | SELS Loes | 65 |
26 | KOREVAAR Jeanne | 59 |
27 | COLES-LYSTER Maggie | 61 |
29 | TACEY April | 62 |
30 | BROUGHTON Charlotte | 60 |
31 | MARIBO Julie Emilie | 60 |
39 | GREENWOOD Monica | 60 |
44 | VERDONSCHOT Laura | 52 |
50 | KASPER Romy | 59 |
59 | CASTRIQUE Alana | 63 |
66 | BASTIAENSSEN Fauve | 62 |
68 | STULTIENS Sabrina | 58 |
73 | BEULING Femke | 65 |