Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.1 * weight + 7
This means that on average for every extra kilogram weight a rider loses 0.1 positions in the result.
Lampaert
1
75 kgVorobyev
2
74 kgVan der Sande
3
67 kgGougeard
4
70 kgSergent
5
76 kgBárta
6
75 kgCordeel
7
80 kgKeizer
8
72 kgSelvaggi
9
73 kgvan Poppel
10
82 kgGardeyn
11
75 kgDrucker
12
75 kgMeersman
13
63 kgVan Hoecke
14
78 kgJans
15
68 kgWyss
16
65 kgKerkhof
17
76 kgLaporte
18
76 kgBarbier
19
79 kgWiśniowski
20
78 kgKreder
21
71 kg
1
75 kgVorobyev
2
74 kgVan der Sande
3
67 kgGougeard
4
70 kgSergent
5
76 kgBárta
6
75 kgCordeel
7
80 kgKeizer
8
72 kgSelvaggi
9
73 kgvan Poppel
10
82 kgGardeyn
11
75 kgDrucker
12
75 kgMeersman
13
63 kgVan Hoecke
14
78 kgJans
15
68 kgWyss
16
65 kgKerkhof
17
76 kgLaporte
18
76 kgBarbier
19
79 kgWiśniowski
20
78 kgKreder
21
71 kg
Weight (KG) →
Result →
82
63
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | LAMPAERT Yves | 75 |
2 | VOROBYEV Anton | 74 |
3 | VAN DER SANDE Tosh | 67 |
4 | GOUGEARD Alexis | 70 |
5 | SERGENT Jesse | 76 |
6 | BÁRTA Jan | 75 |
7 | CORDEEL Sander | 80 |
8 | KEIZER Martijn | 72 |
9 | SELVAGGI Mirko | 73 |
10 | VAN POPPEL Danny | 82 |
11 | GARDEYN Gorik | 75 |
12 | DRUCKER Jempy | 75 |
13 | MEERSMAN Gianni | 63 |
14 | VAN HOECKE Gijs | 78 |
15 | JANS Roy | 68 |
16 | WYSS Danilo | 65 |
17 | KERKHOF Tim | 76 |
18 | LAPORTE Christophe | 76 |
19 | BARBIER Rudy | 79 |
20 | WIŚNIOWSKI Łukasz | 78 |
21 | KREDER Wesley | 71 |