Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight - 26
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
Dupont
1
72 kgDe Bie
2
65 kgVan der Sande
3
67 kgWiśniowski
4
78 kgBohli
5
71 kgGroenewegen
6
70 kgKeizer
7
72 kgPolitt
8
80 kgPlanckaert
9
65 kgMeurisse
10
71 kgVorobyev
11
74 kgBagdonas
12
78 kgPardini
13
68 kgDruyts
14
69 kgBožič
15
70 kgCapiot
16
69 kgWallays
17
77 kgWagner
18
75 kgHutarovich
19
71 kgVan Keirsbulck
20
89 kgSénéchal
21
77 kgZabel
22
81 kg
1
72 kgDe Bie
2
65 kgVan der Sande
3
67 kgWiśniowski
4
78 kgBohli
5
71 kgGroenewegen
6
70 kgKeizer
7
72 kgPolitt
8
80 kgPlanckaert
9
65 kgMeurisse
10
71 kgVorobyev
11
74 kgBagdonas
12
78 kgPardini
13
68 kgDruyts
14
69 kgBožič
15
70 kgCapiot
16
69 kgWallays
17
77 kgWagner
18
75 kgHutarovich
19
71 kgVan Keirsbulck
20
89 kgSénéchal
21
77 kgZabel
22
81 kg
Weight (KG) →
Result →
89
65
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | DUPONT Timothy | 72 |
2 | DE BIE Sean | 65 |
3 | VAN DER SANDE Tosh | 67 |
4 | WIŚNIOWSKI Łukasz | 78 |
5 | BOHLI Tom | 71 |
6 | GROENEWEGEN Dylan | 70 |
7 | KEIZER Martijn | 72 |
8 | POLITT Nils | 80 |
9 | PLANCKAERT Baptiste | 65 |
10 | MEURISSE Xandro | 71 |
11 | VOROBYEV Anton | 74 |
12 | BAGDONAS Gediminas | 78 |
13 | PARDINI Olivier | 68 |
14 | DRUYTS Gerry | 69 |
15 | BOŽIČ Borut | 70 |
16 | CAPIOT Amaury | 69 |
17 | WALLAYS Jelle | 77 |
18 | WAGNER Robert | 75 |
19 | HUTAROVICH Yauheni | 71 |
20 | VAN KEIRSBULCK Guillaume | 89 |
21 | SÉNÉCHAL Florian | 77 |
22 | ZABEL Rick | 81 |