Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.4 * weight - 19
This means that on average for every extra kilogram weight a rider loses 0.4 positions in the result.
Bohli
1
71 kgGroenewegen
2
70 kgKeizer
3
72 kgVan der Sande
4
67 kgWiśniowski
5
78 kgPlanckaert
6
65 kgVorobyev
7
74 kgDupont
8
72 kgGretsch
9
69 kgBagdonas
10
78 kgDruyts
11
69 kgLammertink
12
68 kgDe Bie
13
65 kgBožič
14
70 kgCapiot
15
69 kgWagner
16
75 kgVan Keirsbulck
17
89 kgHutarovich
18
71 kgPolitt
19
80 kgNapolitano
20
81 kg
1
71 kgGroenewegen
2
70 kgKeizer
3
72 kgVan der Sande
4
67 kgWiśniowski
5
78 kgPlanckaert
6
65 kgVorobyev
7
74 kgDupont
8
72 kgGretsch
9
69 kgBagdonas
10
78 kgDruyts
11
69 kgLammertink
12
68 kgDe Bie
13
65 kgBožič
14
70 kgCapiot
15
69 kgWagner
16
75 kgVan Keirsbulck
17
89 kgHutarovich
18
71 kgPolitt
19
80 kgNapolitano
20
81 kg
Weight (KG) →
Result →
89
65
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | BOHLI Tom | 71 |
2 | GROENEWEGEN Dylan | 70 |
3 | KEIZER Martijn | 72 |
4 | VAN DER SANDE Tosh | 67 |
5 | WIŚNIOWSKI Łukasz | 78 |
6 | PLANCKAERT Baptiste | 65 |
7 | VOROBYEV Anton | 74 |
8 | DUPONT Timothy | 72 |
9 | GRETSCH Patrick | 69 |
10 | BAGDONAS Gediminas | 78 |
11 | DRUYTS Gerry | 69 |
12 | LAMMERTINK Steven | 68 |
13 | DE BIE Sean | 65 |
14 | BOŽIČ Borut | 70 |
15 | CAPIOT Amaury | 69 |
16 | WAGNER Robert | 75 |
17 | VAN KEIRSBULCK Guillaume | 89 |
18 | HUTAROVICH Yauheni | 71 |
19 | POLITT Nils | 80 |
20 | NAPOLITANO Danilo | 81 |