Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.6 * weight + 144
This means that on average for every extra kilogram weight a rider loses -1.6 positions in the result.
Vanderaerden
4
74 kgGayant
6
69 kgSergeant
8
76 kgWampers
9
82 kgZoetemelk
10
68 kgPlanckaert
13
69 kgBernaudeau
14
64 kgYates
16
74 kgPieters
17
82 kgDuclos-Lassalle
28
73 kgMoreau
29
77 kgJourdan
37
64 kgMadiot
45
68 kgSwart
52
74 kgNevens
66
58 kgMarie
70
68 kgDemol
75
72 kgNijdam
88
70 kg
4
74 kgGayant
6
69 kgSergeant
8
76 kgWampers
9
82 kgZoetemelk
10
68 kgPlanckaert
13
69 kgBernaudeau
14
64 kgYates
16
74 kgPieters
17
82 kgDuclos-Lassalle
28
73 kgMoreau
29
77 kgJourdan
37
64 kgMadiot
45
68 kgSwart
52
74 kgNevens
66
58 kgMarie
70
68 kgDemol
75
72 kgNijdam
88
70 kg
Weight (KG) →
Result →
82
58
4
88
# | Rider | Weight (KG) |
---|---|---|
4 | VANDERAERDEN Eric | 74 |
6 | GAYANT Martial | 69 |
8 | SERGEANT Marc | 76 |
9 | WAMPERS Jean-Marie | 82 |
10 | ZOETEMELK Joop | 68 |
13 | PLANCKAERT Eddy | 69 |
14 | BERNAUDEAU Jean-René | 64 |
16 | YATES Sean | 74 |
17 | PIETERS Peter | 82 |
28 | DUCLOS-LASSALLE Gilbert | 73 |
29 | MOREAU Francis | 77 |
37 | JOURDAN Christian | 64 |
45 | MADIOT Marc | 68 |
52 | SWART Steve | 74 |
66 | NEVENS Jan | 58 |
70 | MARIE Thierry | 68 |
75 | DEMOL Dirk | 72 |
88 | NIJDAM Jelle | 70 |