Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -26.3 * weight + 2510
This means that on average for every extra kilogram weight a rider loses -26.3 positions in the result.
Nijdam
1
70 kgVanderaerden
2
74 kgDuclos-Lassalle
4
73 kgMarie
5
68 kgYates
6
74 kgPieters
8
82 kgMoreau
11
77 kgSwart
990
74 kgElliott
990
76 kgPlanckaert
990
69 kgMadiot
990
68 kgGayant
990
69 kgJourdan
990
64 kgBernaudeau
990
64 kgNevens
990
58 kgSergeant
990
76 kgDemol
990
72 kgWampers
990
82 kgZoetemelk
990
68 kg
1
70 kgVanderaerden
2
74 kgDuclos-Lassalle
4
73 kgMarie
5
68 kgYates
6
74 kgPieters
8
82 kgMoreau
11
77 kgSwart
990
74 kgElliott
990
76 kgPlanckaert
990
69 kgMadiot
990
68 kgGayant
990
69 kgJourdan
990
64 kgBernaudeau
990
64 kgNevens
990
58 kgSergeant
990
76 kgDemol
990
72 kgWampers
990
82 kgZoetemelk
990
68 kg
Weight (KG) →
Result →
82
58
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | NIJDAM Jelle | 70 |
2 | VANDERAERDEN Eric | 74 |
4 | DUCLOS-LASSALLE Gilbert | 73 |
5 | MARIE Thierry | 68 |
6 | YATES Sean | 74 |
8 | PIETERS Peter | 82 |
11 | MOREAU Francis | 77 |
990 | SWART Steve | 74 |
990 | ELLIOTT Malcolm | 76 |
990 | PLANCKAERT Eddy | 69 |
990 | MADIOT Marc | 68 |
990 | GAYANT Martial | 69 |
990 | JOURDAN Christian | 64 |
990 | BERNAUDEAU Jean-René | 64 |
990 | NEVENS Jan | 58 |
990 | SERGEANT Marc | 76 |
990 | DEMOL Dirk | 72 |
990 | WAMPERS Jean-Marie | 82 |
990 | ZOETEMELK Joop | 68 |