Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -12.9 * weight + 1552
This means that on average for every extra kilogram weight a rider loses -12.9 positions in the result.
Vanderaerden
3
74 kgElliott
5
76 kgPlanckaert
7
69 kgSergeant
9
76 kgNevens
12
58 kgYates
14
74 kgPieters
15
82 kgSwart
990
74 kgMoreau
990
77 kgMadiot
990
68 kgMarie
990
68 kgGayant
990
69 kgJourdan
990
64 kgBernaudeau
990
64 kgDemol
990
72 kgWampers
990
82 kgNijdam
990
70 kgZoetemelk
990
68 kgDuclos-Lassalle
990
73 kg
3
74 kgElliott
5
76 kgPlanckaert
7
69 kgSergeant
9
76 kgNevens
12
58 kgYates
14
74 kgPieters
15
82 kgSwart
990
74 kgMoreau
990
77 kgMadiot
990
68 kgMarie
990
68 kgGayant
990
69 kgJourdan
990
64 kgBernaudeau
990
64 kgDemol
990
72 kgWampers
990
82 kgNijdam
990
70 kgZoetemelk
990
68 kgDuclos-Lassalle
990
73 kg
Weight (KG) →
Result →
82
58
3
990
# | Rider | Weight (KG) |
---|---|---|
3 | VANDERAERDEN Eric | 74 |
5 | ELLIOTT Malcolm | 76 |
7 | PLANCKAERT Eddy | 69 |
9 | SERGEANT Marc | 76 |
12 | NEVENS Jan | 58 |
14 | YATES Sean | 74 |
15 | PIETERS Peter | 82 |
990 | SWART Steve | 74 |
990 | MOREAU Francis | 77 |
990 | MADIOT Marc | 68 |
990 | MARIE Thierry | 68 |
990 | GAYANT Martial | 69 |
990 | JOURDAN Christian | 64 |
990 | BERNAUDEAU Jean-René | 64 |
990 | DEMOL Dirk | 72 |
990 | WAMPERS Jean-Marie | 82 |
990 | NIJDAM Jelle | 70 |
990 | ZOETEMELK Joop | 68 |
990 | DUCLOS-LASSALLE Gilbert | 73 |