Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 20.2 * weight - 938
This means that on average for every extra kilogram weight a rider loses 20.2 positions in the result.
Nevens
2
58 kgVanderaerden
4
74 kgGayant
5
69 kgSergeant
7
76 kgPlanckaert
9
69 kgMadiot
10
68 kgBernaudeau
11
64 kgZoetemelk
12
68 kgWampers
14
82 kgSwart
990
74 kgMoreau
990
77 kgMarie
990
68 kgJourdan
990
64 kgYates
990
74 kgDemol
990
72 kgPieters
990
82 kgNijdam
990
70 kgDuclos-Lassalle
990
73 kg
2
58 kgVanderaerden
4
74 kgGayant
5
69 kgSergeant
7
76 kgPlanckaert
9
69 kgMadiot
10
68 kgBernaudeau
11
64 kgZoetemelk
12
68 kgWampers
14
82 kgSwart
990
74 kgMoreau
990
77 kgMarie
990
68 kgJourdan
990
64 kgYates
990
74 kgDemol
990
72 kgPieters
990
82 kgNijdam
990
70 kgDuclos-Lassalle
990
73 kg
Weight (KG) →
Result →
82
58
2
990
# | Rider | Weight (KG) |
---|---|---|
2 | NEVENS Jan | 58 |
4 | VANDERAERDEN Eric | 74 |
5 | GAYANT Martial | 69 |
7 | SERGEANT Marc | 76 |
9 | PLANCKAERT Eddy | 69 |
10 | MADIOT Marc | 68 |
11 | BERNAUDEAU Jean-René | 64 |
12 | ZOETEMELK Joop | 68 |
14 | WAMPERS Jean-Marie | 82 |
990 | SWART Steve | 74 |
990 | MOREAU Francis | 77 |
990 | MARIE Thierry | 68 |
990 | JOURDAN Christian | 64 |
990 | YATES Sean | 74 |
990 | DEMOL Dirk | 72 |
990 | PIETERS Peter | 82 |
990 | NIJDAM Jelle | 70 |
990 | DUCLOS-LASSALLE Gilbert | 73 |