Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -15.2 * weight + 1801
This means that on average for every extra kilogram weight a rider loses -15.2 positions in the result.
Gayant
1
69 kgVanderaerden
5
74 kgPlanckaert
6
69 kgPieters
8
82 kgDemol
9
72 kgMoreau
990
77 kgSwart
990
74 kgMarie
990
68 kgMadiot
990
68 kgJourdan
990
64 kgBernaudeau
990
64 kgYates
990
74 kgNevens
990
58 kgSergeant
990
76 kgWampers
990
82 kgNijdam
990
70 kgZoetemelk
990
68 kgDuclos-Lassalle
990
73 kg
1
69 kgVanderaerden
5
74 kgPlanckaert
6
69 kgPieters
8
82 kgDemol
9
72 kgMoreau
990
77 kgSwart
990
74 kgMarie
990
68 kgMadiot
990
68 kgJourdan
990
64 kgBernaudeau
990
64 kgYates
990
74 kgNevens
990
58 kgSergeant
990
76 kgWampers
990
82 kgNijdam
990
70 kgZoetemelk
990
68 kgDuclos-Lassalle
990
73 kg
Weight (KG) →
Result →
82
58
1
990
# | Rider | Weight (KG) |
---|---|---|
1 | GAYANT Martial | 69 |
5 | VANDERAERDEN Eric | 74 |
6 | PLANCKAERT Eddy | 69 |
8 | PIETERS Peter | 82 |
9 | DEMOL Dirk | 72 |
990 | MOREAU Francis | 77 |
990 | SWART Steve | 74 |
990 | MARIE Thierry | 68 |
990 | MADIOT Marc | 68 |
990 | JOURDAN Christian | 64 |
990 | BERNAUDEAU Jean-René | 64 |
990 | YATES Sean | 74 |
990 | NEVENS Jan | 58 |
990 | SERGEANT Marc | 76 |
990 | WAMPERS Jean-Marie | 82 |
990 | NIJDAM Jelle | 70 |
990 | ZOETEMELK Joop | 68 |
990 | DUCLOS-LASSALLE Gilbert | 73 |