Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -18.6 * weight + 2096
This means that on average for every extra kilogram weight a rider loses -18.6 positions in the result.
Vanderaerden
3
74 kgDemol
11
72 kgPlanckaert
13
69 kgPieters
15
82 kgSwart
990
74 kgMoreau
990
77 kgMarie
990
68 kgMadiot
990
68 kgGayant
990
69 kgJourdan
990
64 kgYates
990
74 kgBernaudeau
990
64 kgSergeant
990
76 kgNevens
990
58 kgWampers
990
82 kgNijdam
990
70 kgZoetemelk
990
68 kgDuclos-Lassalle
990
73 kg
3
74 kgDemol
11
72 kgPlanckaert
13
69 kgPieters
15
82 kgSwart
990
74 kgMoreau
990
77 kgMarie
990
68 kgMadiot
990
68 kgGayant
990
69 kgJourdan
990
64 kgYates
990
74 kgBernaudeau
990
64 kgSergeant
990
76 kgNevens
990
58 kgWampers
990
82 kgNijdam
990
70 kgZoetemelk
990
68 kgDuclos-Lassalle
990
73 kg
Weight (KG) →
Result →
82
58
3
990
# | Rider | Weight (KG) |
---|---|---|
3 | VANDERAERDEN Eric | 74 |
11 | DEMOL Dirk | 72 |
13 | PLANCKAERT Eddy | 69 |
15 | PIETERS Peter | 82 |
990 | SWART Steve | 74 |
990 | MOREAU Francis | 77 |
990 | MARIE Thierry | 68 |
990 | MADIOT Marc | 68 |
990 | GAYANT Martial | 69 |
990 | JOURDAN Christian | 64 |
990 | YATES Sean | 74 |
990 | BERNAUDEAU Jean-René | 64 |
990 | SERGEANT Marc | 76 |
990 | NEVENS Jan | 58 |
990 | WAMPERS Jean-Marie | 82 |
990 | NIJDAM Jelle | 70 |
990 | ZOETEMELK Joop | 68 |
990 | DUCLOS-LASSALLE Gilbert | 73 |