Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.2 * weight + 125
This means that on average for every extra kilogram weight a rider loses -1.2 positions in the result.
Vanderaerden
3
74 kgSergeant
4
76 kgMoreau
7
77 kgMarie
8
68 kgDuclos-Lassalle
9
73 kgBruyneel
12
71 kgHoste
21
76 kgPieters
22
82 kgGayant
23
69 kgMuseeuw
24
71 kgDernies
49
75 kgSkibby
67
70 kgBomans
68
74 kgDe Wolf
69
75 kgSwart
70
74 kgVeenstra
81
70 kgHeirweg
91
73 kg
3
74 kgSergeant
4
76 kgMoreau
7
77 kgMarie
8
68 kgDuclos-Lassalle
9
73 kgBruyneel
12
71 kgHoste
21
76 kgPieters
22
82 kgGayant
23
69 kgMuseeuw
24
71 kgDernies
49
75 kgSkibby
67
70 kgBomans
68
74 kgDe Wolf
69
75 kgSwart
70
74 kgVeenstra
81
70 kgHeirweg
91
73 kg
Weight (KG) →
Result →
82
68
3
91
# | Rider | Weight (KG) |
---|---|---|
3 | VANDERAERDEN Eric | 74 |
4 | SERGEANT Marc | 76 |
7 | MOREAU Francis | 77 |
8 | MARIE Thierry | 68 |
9 | DUCLOS-LASSALLE Gilbert | 73 |
12 | BRUYNEEL Johan | 71 |
21 | HOSTE Frank | 76 |
22 | PIETERS Peter | 82 |
23 | GAYANT Martial | 69 |
24 | MUSEEUW Johan | 71 |
49 | DERNIES Michel | 75 |
67 | SKIBBY Jesper | 70 |
68 | BOMANS Carlo | 74 |
69 | DE WOLF Fons | 75 |
70 | SWART Steve | 74 |
81 | VEENSTRA Wiebren | 70 |
91 | HEIRWEG Dirk | 73 |