Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 1 * weight - 43
This means that on average for every extra kilogram weight a rider loses 1 positions in the result.
Roche
1
74 kgMarie
3
68 kgMuseeuw
5
71 kgDuclos-Lassalle
7
73 kgArroyo
13
59 kgNijdam
15
70 kgDemol
23
72 kgVeenstra
25
70 kgRiis
28
71 kgMadouas
31
70 kgPeeters
35
76 kgde Vries
38
75 kgVanderaerden
41
74 kgMoreau
42
77 kgPlanckaert
44
69 kgSolleveld
48
93 kgGarmendia
55
68 kg
1
74 kgMarie
3
68 kgMuseeuw
5
71 kgDuclos-Lassalle
7
73 kgArroyo
13
59 kgNijdam
15
70 kgDemol
23
72 kgVeenstra
25
70 kgRiis
28
71 kgMadouas
31
70 kgPeeters
35
76 kgde Vries
38
75 kgVanderaerden
41
74 kgMoreau
42
77 kgPlanckaert
44
69 kgSolleveld
48
93 kgGarmendia
55
68 kg
Weight (KG) →
Result →
93
59
1
55
# | Rider | Weight (KG) |
---|---|---|
1 | ROCHE Stephen | 74 |
3 | MARIE Thierry | 68 |
5 | MUSEEUW Johan | 71 |
7 | DUCLOS-LASSALLE Gilbert | 73 |
13 | ARROYO Miguel | 59 |
15 | NIJDAM Jelle | 70 |
23 | DEMOL Dirk | 72 |
25 | VEENSTRA Wiebren | 70 |
28 | RIIS Bjarne | 71 |
31 | MADOUAS Laurent | 70 |
35 | PEETERS Wilfried | 76 |
38 | DE VRIES Gerrit | 75 |
41 | VANDERAERDEN Eric | 74 |
42 | MOREAU Francis | 77 |
44 | PLANCKAERT Eddy | 69 |
48 | SOLLEVELD Gerrit | 93 |
55 | GARMENDIA Aitor | 68 |