Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 6.8 * weight + 222
This means that on average for every extra kilogram weight a rider loses 6.8 positions in the result.
Museeuw
2
71 kgJalabert
3
66 kgEkimov
4
69 kgMarie
5
68 kgMoreau
8
77 kgDurand
9
76 kgDemol
990
72 kgHolm Sørensen
990
77 kgMoncassin
990
73 kgMeinert-Nielsen
990
73 kgPeeters
990
76 kgLeysen
990
75 kgEscartín
990
61 kgVirenque
990
65 kgWauters
990
73 kgFignon
990
67 kgRoche
990
74 kgDe Wilde
990
70 kgMadiot
990
68 kgSolleveld
990
93 kgVeenstra
990
70 kg
2
71 kgJalabert
3
66 kgEkimov
4
69 kgMarie
5
68 kgMoreau
8
77 kgDurand
9
76 kgDemol
990
72 kgHolm Sørensen
990
77 kgMoncassin
990
73 kgMeinert-Nielsen
990
73 kgPeeters
990
76 kgLeysen
990
75 kgEscartín
990
61 kgVirenque
990
65 kgWauters
990
73 kgFignon
990
67 kgRoche
990
74 kgDe Wilde
990
70 kgMadiot
990
68 kgSolleveld
990
93 kgVeenstra
990
70 kg
Weight (KG) →
Result →
93
61
2
990
# | Rider | Weight (KG) |
---|---|---|
2 | MUSEEUW Johan | 71 |
3 | JALABERT Laurent | 66 |
4 | EKIMOV Viatcheslav | 69 |
5 | MARIE Thierry | 68 |
8 | MOREAU Francis | 77 |
9 | DURAND Jacky | 76 |
990 | DEMOL Dirk | 72 |
990 | HOLM SØRENSEN Brian | 77 |
990 | MONCASSIN Frédéric | 73 |
990 | MEINERT-NIELSEN Peter | 73 |
990 | PEETERS Wilfried | 76 |
990 | LEYSEN Bart | 75 |
990 | ESCARTÍN Fernando | 61 |
990 | VIRENQUE Richard | 65 |
990 | WAUTERS Marc | 73 |
990 | FIGNON Laurent | 67 |
990 | ROCHE Stephen | 74 |
990 | DE WILDE Etienne | 70 |
990 | MADIOT Marc | 68 |
990 | SOLLEVELD Gerrit | 93 |
990 | VEENSTRA Wiebren | 70 |