Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 15 * weight - 326
This means that on average for every extra kilogram weight a rider loses 15 positions in the result.
Marie
3
68 kgJalabert
4
66 kgMuseeuw
5
71 kgEkimov
8
69 kgRoche
10
74 kgDemol
990
72 kgHolm Sørensen
990
77 kgMoncassin
990
73 kgMoreau
990
77 kgMeinert-Nielsen
990
73 kgPeeters
990
76 kgLeysen
990
75 kgEscartín
990
61 kgDurand
990
76 kgVirenque
990
65 kgWauters
990
73 kgFignon
990
67 kgDe Wilde
990
70 kgMadiot
990
68 kgSolleveld
990
93 kgVeenstra
990
70 kg
3
68 kgJalabert
4
66 kgMuseeuw
5
71 kgEkimov
8
69 kgRoche
10
74 kgDemol
990
72 kgHolm Sørensen
990
77 kgMoncassin
990
73 kgMoreau
990
77 kgMeinert-Nielsen
990
73 kgPeeters
990
76 kgLeysen
990
75 kgEscartín
990
61 kgDurand
990
76 kgVirenque
990
65 kgWauters
990
73 kgFignon
990
67 kgDe Wilde
990
70 kgMadiot
990
68 kgSolleveld
990
93 kgVeenstra
990
70 kg
Weight (KG) →
Result →
93
61
3
990
# | Rider | Weight (KG) |
---|---|---|
3 | MARIE Thierry | 68 |
4 | JALABERT Laurent | 66 |
5 | MUSEEUW Johan | 71 |
8 | EKIMOV Viatcheslav | 69 |
10 | ROCHE Stephen | 74 |
990 | DEMOL Dirk | 72 |
990 | HOLM SØRENSEN Brian | 77 |
990 | MONCASSIN Frédéric | 73 |
990 | MOREAU Francis | 77 |
990 | MEINERT-NIELSEN Peter | 73 |
990 | PEETERS Wilfried | 76 |
990 | LEYSEN Bart | 75 |
990 | ESCARTÍN Fernando | 61 |
990 | DURAND Jacky | 76 |
990 | VIRENQUE Richard | 65 |
990 | WAUTERS Marc | 73 |
990 | FIGNON Laurent | 67 |
990 | DE WILDE Etienne | 70 |
990 | MADIOT Marc | 68 |
990 | SOLLEVELD Gerrit | 93 |
990 | VEENSTRA Wiebren | 70 |