Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 16
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Honchar
1
67 kgVinokourov
2
68 kgBrochard
3
68 kgKasputis
4
83 kgEkimov
5
69 kgDurand
6
76 kgBerzin
7
64 kgBäckstedt
8
94 kgDekker
9
66 kgBaranowski
10
68 kgLefèvre
11
67 kgZanette
13
82 kgMoreau
14
77 kgJalabert
15
68 kgSerpellini
16
75 kgVierhouten
17
71 kgMaignan
18
63 kgCassani
19
65 kgPretot
20
71 kg
1
67 kgVinokourov
2
68 kgBrochard
3
68 kgKasputis
4
83 kgEkimov
5
69 kgDurand
6
76 kgBerzin
7
64 kgBäckstedt
8
94 kgDekker
9
66 kgBaranowski
10
68 kgLefèvre
11
67 kgZanette
13
82 kgMoreau
14
77 kgJalabert
15
68 kgSerpellini
16
75 kgVierhouten
17
71 kgMaignan
18
63 kgCassani
19
65 kgPretot
20
71 kg
Weight (KG) →
Result →
94
63
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | HONCHAR Serhiy | 67 |
2 | VINOKOUROV Alexandre | 68 |
3 | BROCHARD Laurent | 68 |
4 | KASPUTIS Artūras | 83 |
5 | EKIMOV Viatcheslav | 69 |
6 | DURAND Jacky | 76 |
7 | BERZIN Evgeni | 64 |
8 | BÄCKSTEDT Magnus | 94 |
9 | DEKKER Erik | 66 |
10 | BARANOWSKI Dariusz | 68 |
11 | LEFÈVRE Laurent | 67 |
13 | ZANETTE Denis | 82 |
14 | MOREAU Francis | 77 |
15 | JALABERT Nicolas | 68 |
16 | SERPELLINI Marco | 75 |
17 | VIERHOUTEN Aart | 71 |
18 | MAIGNAN Gilles | 63 |
19 | CASSANI Enrico | 65 |
20 | PRETOT Arnaud | 71 |