Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.5 * weight + 47
This means that on average for every extra kilogram weight a rider loses -0.5 positions in the result.
Brard
1
74 kgBichot
2
67 kgPetito
3
78 kgDrujon
4
75 kgCucinotta
5
71 kgRoche
6
70 kgSprick
8
71 kgFinot
9
65 kgJoly
10
74 kgFédrigo
11
66 kgFurlan
12
72 kgBerthou
13
72 kgKlostergaard
14
69 kgHaddou
15
80 kgSalmon
16
60 kgPietropolli
17
61 kgten Dam
18
67 kgDumoulin
19
57 kgRoberts
20
71 kgLequatre
21
64 kg
1
74 kgBichot
2
67 kgPetito
3
78 kgDrujon
4
75 kgCucinotta
5
71 kgRoche
6
70 kgSprick
8
71 kgFinot
9
65 kgJoly
10
74 kgFédrigo
11
66 kgFurlan
12
72 kgBerthou
13
72 kgKlostergaard
14
69 kgHaddou
15
80 kgSalmon
16
60 kgPietropolli
17
61 kgten Dam
18
67 kgDumoulin
19
57 kgRoberts
20
71 kgLequatre
21
64 kg
Weight (KG) →
Result →
80
57
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | BRARD Florent | 74 |
2 | BICHOT Freddy | 67 |
3 | PETITO Roberto | 78 |
4 | DRUJON Mathieu | 75 |
5 | CUCINOTTA Claudio | 71 |
6 | ROCHE Nicolas | 70 |
8 | SPRICK Matthieu | 71 |
9 | FINOT Frédéric | 65 |
10 | JOLY Sébastien | 74 |
11 | FÉDRIGO Pierrick | 66 |
12 | FURLAN Angelo | 72 |
13 | BERTHOU Eric | 72 |
14 | KLOSTERGAARD Kasper | 69 |
15 | HADDOU Saïd | 80 |
16 | SALMON Benoît | 60 |
17 | PIETROPOLLI Daniele | 61 |
18 | TEN DAM Laurens | 67 |
19 | DUMOULIN Samuel | 57 |
20 | ROBERTS Luke | 71 |
21 | LEQUATRE Geoffroy | 64 |