Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.3 * weight - 5
This means that on average for every extra kilogram weight a rider loses 0.3 positions in the result.
Duval
1
68 kgKadri
2
66 kgLampaert
4
75 kgKneisky
5
68 kgMondory
6
66 kgSoupe
7
70 kgDrucker
9
75 kgFeng
10
68 kgLelay
11
67 kgEl Fares
13
62 kgRiblon
14
65 kgJérôme
15
65 kgMaaskant
16
76 kgDaniel
17
74 kgTleubayev
18
70 kgVachon
19
65 kgElmiger
20
73 kgŠiškevičius
21
80 kgLequatre
22
64 kgVaugrenard
24
72 kg
1
68 kgKadri
2
66 kgLampaert
4
75 kgKneisky
5
68 kgMondory
6
66 kgSoupe
7
70 kgDrucker
9
75 kgFeng
10
68 kgLelay
11
67 kgEl Fares
13
62 kgRiblon
14
65 kgJérôme
15
65 kgMaaskant
16
76 kgDaniel
17
74 kgTleubayev
18
70 kgVachon
19
65 kgElmiger
20
73 kgŠiškevičius
21
80 kgLequatre
22
64 kgVaugrenard
24
72 kg
Weight (KG) →
Result →
80
62
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | DUVAL Julien | 68 |
2 | KADRI Blel | 66 |
4 | LAMPAERT Yves | 75 |
5 | KNEISKY Morgan | 68 |
6 | MONDORY Lloyd | 66 |
7 | SOUPE Geoffrey | 70 |
9 | DRUCKER Jempy | 75 |
10 | FENG Chun Kai | 68 |
11 | LELAY David | 67 |
13 | EL FARES Julien | 62 |
14 | RIBLON Christophe | 65 |
15 | JÉRÔME Vincent | 65 |
16 | MAASKANT Martijn | 76 |
17 | DANIEL Maxime | 74 |
18 | TLEUBAYEV Ruslan | 70 |
19 | VACHON Florian | 65 |
20 | ELMIGER Martin | 73 |
21 | ŠIŠKEVIČIUS Evaldas | 80 |
22 | LEQUATRE Geoffroy | 64 |
24 | VAUGRENARD Benoît | 72 |