Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 32
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Démare
1
76 kgSinkeldam
2
77 kgvan Hummel
3
64 kgPetit
4
80 kgMartinez
6
69 kgVan Staeyen
7
62 kgGiraud
8
71 kgTurgot
9
73 kgMertens
10
73 kgSchnaidt
11
70 kgDuval
12
68 kgPelucchi
13
74 kgŠiškevičius
14
80 kgGuardini
15
66 kgDelage
17
70 kgReimer
18
69 kgHardy
19
62 kg
1
76 kgSinkeldam
2
77 kgvan Hummel
3
64 kgPetit
4
80 kgMartinez
6
69 kgVan Staeyen
7
62 kgGiraud
8
71 kgTurgot
9
73 kgMertens
10
73 kgSchnaidt
11
70 kgDuval
12
68 kgPelucchi
13
74 kgŠiškevičius
14
80 kgGuardini
15
66 kgDelage
17
70 kgReimer
18
69 kgHardy
19
62 kg
Weight (KG) →
Result →
80
62
1
19
# | Rider | Weight (KG) |
---|---|---|
1 | DÉMARE Arnaud | 76 |
2 | SINKELDAM Ramon | 77 |
3 | VAN HUMMEL Kenny | 64 |
4 | PETIT Adrien | 80 |
6 | MARTINEZ Yannick | 69 |
7 | VAN STAEYEN Michael | 62 |
8 | GIRAUD Benjamin | 71 |
9 | TURGOT Sébastien | 73 |
10 | MERTENS Tim | 73 |
11 | SCHNAIDT Fabian | 70 |
12 | DUVAL Julien | 68 |
13 | PELUCCHI Matteo | 74 |
14 | ŠIŠKEVIČIUS Evaldas | 80 |
15 | GUARDINI Andrea | 66 |
17 | DELAGE Mickaël | 70 |
18 | REIMER Martin | 69 |
19 | HARDY Romain | 62 |