Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.2 * weight - 5
This means that on average for every extra kilogram weight a rider loses 0.2 positions in the result.
Démare
1
76 kgSinkeldam
2
77 kgMartinez
3
69 kgVanbilsen
4
73 kgBennett
5
73 kgKluge
6
83 kgDumoulin
8
57 kgArndt
9
77.5 kgVantomme
10
63 kgJacobs
11
68 kgGiraud
12
71 kgLadagnous
13
73 kgVan Asbroeck
14
72 kgDeclercq
15
78 kgPoulhiès
16
75 kgDelfosse
17
73 kgPetit
18
80 kgChavanel
19
73 kgRickaert
20
88 kg
1
76 kgSinkeldam
2
77 kgMartinez
3
69 kgVanbilsen
4
73 kgBennett
5
73 kgKluge
6
83 kgDumoulin
8
57 kgArndt
9
77.5 kgVantomme
10
63 kgJacobs
11
68 kgGiraud
12
71 kgLadagnous
13
73 kgVan Asbroeck
14
72 kgDeclercq
15
78 kgPoulhiès
16
75 kgDelfosse
17
73 kgPetit
18
80 kgChavanel
19
73 kgRickaert
20
88 kg
Weight (KG) →
Result →
88
57
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | DÉMARE Arnaud | 76 |
2 | SINKELDAM Ramon | 77 |
3 | MARTINEZ Yannick | 69 |
4 | VANBILSEN Kenneth | 73 |
5 | BENNETT Sam | 73 |
6 | KLUGE Roger | 83 |
8 | DUMOULIN Samuel | 57 |
9 | ARNDT Nikias | 77.5 |
10 | VANTOMME Maxime | 63 |
11 | JACOBS Pieter | 68 |
12 | GIRAUD Benjamin | 71 |
13 | LADAGNOUS Matthieu | 73 |
14 | VAN ASBROECK Tom | 72 |
15 | DECLERCQ Tim | 78 |
16 | POULHIÈS Stéphane | 75 |
17 | DELFOSSE Sébastien | 73 |
18 | PETIT Adrien | 80 |
19 | CHAVANEL Sylvain | 73 |
20 | RICKAERT Jonas | 88 |