Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 19
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Coquard
1
59 kgTheuns
2
72 kgKonovalovas
3
74 kgGaudin
4
85 kgThurau
5
73 kgVanspeybrouck
6
76 kgDeclercq
7
78 kgGérard
8
70 kgJakin
9
71 kgChainel
10
69 kgPedersen
11
76 kgBlain
12
82 kgJauregui
13
60 kgBackaert
14
78 kgSlik
15
71 kgPichon
16
69 kgFédrigo
17
66 kgPetit
18
80 kgVan Hecke
19
69 kgDuchesne
20
75 kgBenedetti
21
63 kg
1
59 kgTheuns
2
72 kgKonovalovas
3
74 kgGaudin
4
85 kgThurau
5
73 kgVanspeybrouck
6
76 kgDeclercq
7
78 kgGérard
8
70 kgJakin
9
71 kgChainel
10
69 kgPedersen
11
76 kgBlain
12
82 kgJauregui
13
60 kgBackaert
14
78 kgSlik
15
71 kgPichon
16
69 kgFédrigo
17
66 kgPetit
18
80 kgVan Hecke
19
69 kgDuchesne
20
75 kgBenedetti
21
63 kg
Weight (KG) →
Result →
85
59
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | COQUARD Bryan | 59 |
2 | THEUNS Edward | 72 |
3 | KONOVALOVAS Ignatas | 74 |
4 | GAUDIN Damien | 85 |
5 | THURAU Björn | 73 |
6 | VANSPEYBROUCK Pieter | 76 |
7 | DECLERCQ Tim | 78 |
8 | GÉRARD Arnaud | 70 |
9 | JAKIN Alo | 71 |
10 | CHAINEL Steve | 69 |
11 | PEDERSEN Mads | 76 |
12 | BLAIN Alexandre | 82 |
13 | JAUREGUI Quentin | 60 |
14 | BACKAERT Frederik | 78 |
15 | SLIK Ivar | 71 |
16 | PICHON Laurent | 69 |
17 | FÉDRIGO Pierrick | 66 |
18 | PETIT Adrien | 80 |
19 | VAN HECKE Preben | 69 |
20 | DUCHESNE Antoine | 75 |
21 | BENEDETTI Cesare | 63 |