Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0 * weight + 7
This means that on average for every extra kilogram weight a rider loses 0 positions in the result.
Debusschere
1
77 kgSarreau
2
76 kgVenturini
3
60 kgNapolitano
4
81 kgChetout
5
70 kgPetit
6
80 kgVermeltfoort
7
85 kgJans
8
68 kgCardis
9
72 kgBenfatto
10
71 kgBarbier
11
79 kgIrvine
12
80 kgLecroq
13
70 kgDupont
14
72 kgTurgis
15
70 kgCabot
16
76 kgŠiškevičius
17
80 kgDehaes
18
73 kg
1
77 kgSarreau
2
76 kgVenturini
3
60 kgNapolitano
4
81 kgChetout
5
70 kgPetit
6
80 kgVermeltfoort
7
85 kgJans
8
68 kgCardis
9
72 kgBenfatto
10
71 kgBarbier
11
79 kgIrvine
12
80 kgLecroq
13
70 kgDupont
14
72 kgTurgis
15
70 kgCabot
16
76 kgŠiškevičius
17
80 kgDehaes
18
73 kg
Weight (KG) →
Result →
85
60
1
18
# | Rider | Weight (KG) |
---|---|---|
1 | DEBUSSCHERE Jens | 77 |
2 | SARREAU Marc | 76 |
3 | VENTURINI Clément | 60 |
4 | NAPOLITANO Danilo | 81 |
5 | CHETOUT Loïc | 70 |
6 | PETIT Adrien | 80 |
7 | VERMELTFOORT Coen | 85 |
8 | JANS Roy | 68 |
9 | CARDIS Romain | 72 |
10 | BENFATTO Marco | 71 |
11 | BARBIER Rudy | 79 |
12 | IRVINE Martyn | 80 |
13 | LECROQ Jérémy | 70 |
14 | DUPONT Timothy | 72 |
15 | TURGIS Anthony | 70 |
16 | CABOT Jérémy | 76 |
17 | ŠIŠKEVIČIUS Evaldas | 80 |
18 | DEHAES Kenny | 73 |