Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 13
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Sarreau
1
76 kgCoquard
2
59 kgBarbier
3
79 kgWippert
4
75 kgLecroq
5
70 kgDupont
6
72 kgRickaert
7
88 kgTouzé
8
69 kgDe Buyst
9
72 kgBouhanni
10
65 kgVermeltfoort
11
85 kgCombaud
12
63 kgGrosu
13
68 kgAristi
14
72 kgIdjouadiene
15
69 kgŠiškevičius
16
80 kgTrarieux
17
71 kgCapiot
18
69 kg
1
76 kgCoquard
2
59 kgBarbier
3
79 kgWippert
4
75 kgLecroq
5
70 kgDupont
6
72 kgRickaert
7
88 kgTouzé
8
69 kgDe Buyst
9
72 kgBouhanni
10
65 kgVermeltfoort
11
85 kgCombaud
12
63 kgGrosu
13
68 kgAristi
14
72 kgIdjouadiene
15
69 kgŠiškevičius
16
80 kgTrarieux
17
71 kgCapiot
18
69 kg
Weight (KG) →
Result →
88
59
1
18
# | Rider | Weight (KG) |
---|---|---|
1 | SARREAU Marc | 76 |
2 | COQUARD Bryan | 59 |
3 | BARBIER Rudy | 79 |
4 | WIPPERT Wouter | 75 |
5 | LECROQ Jérémy | 70 |
6 | DUPONT Timothy | 72 |
7 | RICKAERT Jonas | 88 |
8 | TOUZÉ Damien | 69 |
9 | DE BUYST Jasper | 72 |
10 | BOUHANNI Nacer | 65 |
11 | VERMELTFOORT Coen | 85 |
12 | COMBAUD Romain | 63 |
13 | GROSU Eduard-Michael | 68 |
14 | ARISTI Mikel | 72 |
15 | IDJOUADIENE Pierre | 69 |
16 | ŠIŠKEVIČIUS Evaldas | 80 |
17 | TRARIEUX Julien | 71 |
18 | CAPIOT Amaury | 69 |