Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 32
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Taminiaux
1
74 kgTrarieux
2
71 kgNorman Leth
3
75 kgReinders
4
78.1 kgCarisey
5
74 kgCardis
6
72 kgJansen
7
83 kgKeukeleire
8
69 kgLeroux
9
79 kgHurel
10
66 kgMartin
11
75 kgVermeulen
12
64 kgPlanckaert
13
65 kgTurgis
14
70 kgDe Bondt
15
73 kgIsta
16
70 kgVanspeybrouck
17
76 kgTeunissen
18
73 kgEenkhoorn
19
72 kg
1
74 kgTrarieux
2
71 kgNorman Leth
3
75 kgReinders
4
78.1 kgCarisey
5
74 kgCardis
6
72 kgJansen
7
83 kgKeukeleire
8
69 kgLeroux
9
79 kgHurel
10
66 kgMartin
11
75 kgVermeulen
12
64 kgPlanckaert
13
65 kgTurgis
14
70 kgDe Bondt
15
73 kgIsta
16
70 kgVanspeybrouck
17
76 kgTeunissen
18
73 kgEenkhoorn
19
72 kg
Weight (KG) →
Result →
83
64
1
19
# | Rider | Weight (KG) |
---|---|---|
1 | TAMINIAUX Lionel | 74 |
2 | TRARIEUX Julien | 71 |
3 | NORMAN LETH Lasse | 75 |
4 | REINDERS Elmar | 78.1 |
5 | CARISEY Clément | 74 |
6 | CARDIS Romain | 72 |
7 | JANSEN Amund Grøndahl | 83 |
8 | KEUKELEIRE Jens | 69 |
9 | LEROUX Samuel | 79 |
10 | HUREL Tony | 66 |
11 | MARTIN Tony | 75 |
12 | VERMEULEN Emiel | 64 |
13 | PLANCKAERT Baptiste | 65 |
14 | TURGIS Anthony | 70 |
15 | DE BONDT Dries | 73 |
16 | ISTA Kevyn | 70 |
17 | VANSPEYBROUCK Pieter | 76 |
18 | TEUNISSEN Mike | 73 |
19 | EENKHOORN Pascal | 72 |