Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.3 * weight + 29
This means that on average for every extra kilogram weight a rider loses -0.3 positions in the result.
Sarreau
1
76 kgGroenewegen
2
70 kgTeunissen
3
73 kgBarbier
4
69 kgBarbier
5
79 kgLiepiņš
6
67 kgReinders
7
78.1 kgBarthe
8
70 kgJansen
9
83 kgDupont
10
72 kgViejo
11
75 kgIdjouadiene
12
69 kgLeroux
13
79 kgVan Staeyen
14
62 kgDevriendt
15
70 kgCapiot
16
69 kgDe Bondt
17
73 kgDuval
18
68 kgVan Asbroeck
19
72 kg
1
76 kgGroenewegen
2
70 kgTeunissen
3
73 kgBarbier
4
69 kgBarbier
5
79 kgLiepiņš
6
67 kgReinders
7
78.1 kgBarthe
8
70 kgJansen
9
83 kgDupont
10
72 kgViejo
11
75 kgIdjouadiene
12
69 kgLeroux
13
79 kgVan Staeyen
14
62 kgDevriendt
15
70 kgCapiot
16
69 kgDe Bondt
17
73 kgDuval
18
68 kgVan Asbroeck
19
72 kg
Weight (KG) →
Result →
83
62
1
19
# | Rider | Weight (KG) |
---|---|---|
1 | SARREAU Marc | 76 |
2 | GROENEWEGEN Dylan | 70 |
3 | TEUNISSEN Mike | 73 |
4 | BARBIER Pierre | 69 |
5 | BARBIER Rudy | 79 |
6 | LIEPIŅŠ Emīls | 67 |
7 | REINDERS Elmar | 78.1 |
8 | BARTHE Cyril | 70 |
9 | JANSEN Amund Grøndahl | 83 |
10 | DUPONT Timothy | 72 |
11 | VIEJO José Daniel | 75 |
12 | IDJOUADIENE Pierre | 69 |
13 | LEROUX Samuel | 79 |
14 | VAN STAEYEN Michael | 62 |
15 | DEVRIENDT Tom | 70 |
16 | CAPIOT Amaury | 69 |
17 | DE BONDT Dries | 73 |
18 | DUVAL Julien | 68 |
19 | VAN ASBROECK Tom | 72 |