Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 25
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Colman
1
73 kgGogl
2
71 kgBlouwe
3
71 kgLeroux
4
79 kgLadagnous
5
73 kgFretin
6
70 kgŠiškevičius
7
80 kgBarthe
8
70 kgStannard
9
74 kgDe Wilde
9
75 kgBallerstedt
11
76 kgStewart
12
66 kgDelettre
13
62 kgFuentes
14
77 kgWatson
15
68 kgRex
16
82 kgRobeet
17
75 kgLe Turnier
19
65 kgGilbert
20
75 kgThomas
21
68 kg
1
73 kgGogl
2
71 kgBlouwe
3
71 kgLeroux
4
79 kgLadagnous
5
73 kgFretin
6
70 kgŠiškevičius
7
80 kgBarthe
8
70 kgStannard
9
74 kgDe Wilde
9
75 kgBallerstedt
11
76 kgStewart
12
66 kgDelettre
13
62 kgFuentes
14
77 kgWatson
15
68 kgRex
16
82 kgRobeet
17
75 kgLe Turnier
19
65 kgGilbert
20
75 kgThomas
21
68 kg
Weight (KG) →
Result →
82
62
1
21
# | Rider | Weight (KG) |
---|---|---|
1 | COLMAN Alex | 73 |
2 | GOGL Michael | 71 |
3 | BLOUWE Louis | 71 |
4 | LEROUX Samuel | 79 |
5 | LADAGNOUS Matthieu | 73 |
6 | FRETIN Milan | 70 |
7 | ŠIŠKEVIČIUS Evaldas | 80 |
8 | BARTHE Cyril | 70 |
9 | STANNARD Robert | 74 |
9 | DE WILDE Gilles | 75 |
11 | BALLERSTEDT Maurice | 76 |
12 | STEWART Jake | 66 |
13 | DELETTRE Alexandre | 62 |
14 | FUENTES Ángel | 77 |
15 | WATSON Samuel | 68 |
16 | REX Laurenz | 82 |
17 | ROBEET Ludovic | 75 |
19 | LE TURNIER Mathias | 65 |
20 | GILBERT Philippe | 75 |
21 | THOMAS Benjamin | 68 |