Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 23
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Bennett
1
73 kgFretin
2
70 kgCapiot
3
69 kgPenhoët
4
64 kgHennequin
5
64 kgJarnet
6
63 kgWeemaes
7
73 kgMenten
8
68 kgWarlop
9
71 kgAckermann
10
78 kgMonk
11
67 kgLecroq
12
70 kgLeclainche
13
65 kgTownsend
14
73 kgHue
15
64 kgMorin
16
74 kgStrong
17
63 kgEekhoff
18
75 kgÄrm
19
75 kgTesson
20
59 kgBerckmoes
23
61 kg
1
73 kgFretin
2
70 kgCapiot
3
69 kgPenhoët
4
64 kgHennequin
5
64 kgJarnet
6
63 kgWeemaes
7
73 kgMenten
8
68 kgWarlop
9
71 kgAckermann
10
78 kgMonk
11
67 kgLecroq
12
70 kgLeclainche
13
65 kgTownsend
14
73 kgHue
15
64 kgMorin
16
74 kgStrong
17
63 kgEekhoff
18
75 kgÄrm
19
75 kgTesson
20
59 kgBerckmoes
23
61 kg
Weight (KG) →
Result →
78
59
1
23
# | Rider | Weight (KG) |
---|---|---|
1 | BENNETT Sam | 73 |
2 | FRETIN Milan | 70 |
3 | CAPIOT Amaury | 69 |
4 | PENHOËT Paul | 64 |
5 | HENNEQUIN Paul | 64 |
6 | JARNET Maxime | 63 |
7 | WEEMAES Sasha | 73 |
8 | MENTEN Milan | 68 |
9 | WARLOP Jordi | 71 |
10 | ACKERMANN Pascal | 78 |
11 | MONK Cyrus | 67 |
12 | LECROQ Jérémy | 70 |
13 | LECLAINCHE Gwen | 65 |
14 | TOWNSEND Rory | 73 |
15 | HUE Antoine | 64 |
16 | MORIN Emmanuel | 74 |
17 | STRONG Corbin | 63 |
18 | EEKHOFF Nils | 75 |
19 | ÄRM Rait | 75 |
20 | TESSON Jason | 59 |
23 | BERCKMOES Jenno | 61 |