Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.2 * weight + 28
This means that on average for every extra kilogram weight a rider loses -0.2 positions in the result.
Bennett
1
73 kgFretin
2
70 kgCapiot
3
69 kgPenhoët
4
64 kgHennequin
5
64 kgAckermann
6
78 kgJarnet
7
63 kgEekhoff
8
75 kgLeclainche
9
65 kgWeemaes
10
73 kgMolly
11
61 kgTownsend
12
73 kgWarlop
13
71 kgMenten
14
68 kgMonk
16
67 kgLecroq
17
70 kgTesson
18
59 kgBarbier
19
69 kgHue
20
64 kgMorin
21
74 kgStrong
22
63 kgBerckmoes
23
61 kgÄrm
24
75 kg
1
73 kgFretin
2
70 kgCapiot
3
69 kgPenhoët
4
64 kgHennequin
5
64 kgAckermann
6
78 kgJarnet
7
63 kgEekhoff
8
75 kgLeclainche
9
65 kgWeemaes
10
73 kgMolly
11
61 kgTownsend
12
73 kgWarlop
13
71 kgMenten
14
68 kgMonk
16
67 kgLecroq
17
70 kgTesson
18
59 kgBarbier
19
69 kgHue
20
64 kgMorin
21
74 kgStrong
22
63 kgBerckmoes
23
61 kgÄrm
24
75 kg
Weight (KG) →
Result →
78
59
1
24
# | Rider | Weight (KG) |
---|---|---|
1 | BENNETT Sam | 73 |
2 | FRETIN Milan | 70 |
3 | CAPIOT Amaury | 69 |
4 | PENHOËT Paul | 64 |
5 | HENNEQUIN Paul | 64 |
6 | ACKERMANN Pascal | 78 |
7 | JARNET Maxime | 63 |
8 | EEKHOFF Nils | 75 |
9 | LECLAINCHE Gwen | 65 |
10 | WEEMAES Sasha | 73 |
11 | MOLLY Kenny | 61 |
12 | TOWNSEND Rory | 73 |
13 | WARLOP Jordi | 71 |
14 | MENTEN Milan | 68 |
16 | MONK Cyrus | 67 |
17 | LECROQ Jérémy | 70 |
18 | TESSON Jason | 59 |
19 | BARBIER Pierre | 69 |
20 | HUE Antoine | 64 |
21 | MORIN Emmanuel | 74 |
22 | STRONG Corbin | 63 |
23 | BERCKMOES Jenno | 61 |
24 | ÄRM Rait | 75 |