Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.4 * weight + 41
This means that on average for every extra kilogram weight a rider loses -0.4 positions in the result.
Zingle
1
67 kgAskey
2
75 kgAndresen
3
69 kgFredheim
5
72 kgWatson
6
68 kgSwift
7
69 kgPeters
8
72 kgSorarrain
10
76 kgAckermann
11
78 kgBudding
12
74 kgDainese
14
70 kgTesson
15
59 kgBeullens
16
79 kgAberasturi
17
69 kgGelders
18
66 kgCoquard
19
59 kgMolly
20
61 kgWalls
21
72 kgStewart
22
66 kgBerckmoes
23
61 kgGautherat
24
70 kgTeunissen
25
73 kg
1
67 kgAskey
2
75 kgAndresen
3
69 kgFredheim
5
72 kgWatson
6
68 kgSwift
7
69 kgPeters
8
72 kgSorarrain
10
76 kgAckermann
11
78 kgBudding
12
74 kgDainese
14
70 kgTesson
15
59 kgBeullens
16
79 kgAberasturi
17
69 kgGelders
18
66 kgCoquard
19
59 kgMolly
20
61 kgWalls
21
72 kgStewart
22
66 kgBerckmoes
23
61 kgGautherat
24
70 kgTeunissen
25
73 kg
Weight (KG) →
Result →
79
59
1
25
# | Rider | Weight (KG) |
---|---|---|
1 | ZINGLE Axel | 67 |
2 | ASKEY Lewis | 75 |
3 | ANDRESEN Tobias Lund | 69 |
5 | FREDHEIM Stian | 72 |
6 | WATSON Samuel | 68 |
7 | SWIFT Ben | 69 |
8 | PETERS Nans | 72 |
10 | SORARRAIN Gorka | 76 |
11 | ACKERMANN Pascal | 78 |
12 | BUDDING Martijn | 74 |
14 | DAINESE Alberto | 70 |
15 | TESSON Jason | 59 |
16 | BEULLENS Cedric | 79 |
17 | ABERASTURI Jon | 69 |
18 | GELDERS Gil | 66 |
19 | COQUARD Bryan | 59 |
20 | MOLLY Kenny | 61 |
21 | WALLS Matthew | 72 |
22 | STEWART Jake | 66 |
23 | BERCKMOES Jenno | 61 |
24 | GAUTHERAT Pierre | 70 |
25 | TEUNISSEN Mike | 73 |