Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.5 * weight - 8
This means that on average for every extra kilogram weight a rider loses 0.5 positions in the result.
van Vleuten
1
59 kgOlds
2
54 kgSpratt
3
55 kgvan den Broek-Blaak
5
64 kgSlappendel
6
67 kgFerrand-Prévot
7
53 kgElvin
8
63 kgKessler
12
60 kgde Baat
13
56 kgMartin
15
57 kgMajerus
16
56 kgPitel
18
52 kgAllen
19
55 kgEdmondson
24
66 kgBujak
30
63 kgKoster
36
56 kgNilsson
40
58 kgBrzeźna
48
56 kgvan Neck
71
63 kg
1
59 kgOlds
2
54 kgSpratt
3
55 kgvan den Broek-Blaak
5
64 kgSlappendel
6
67 kgFerrand-Prévot
7
53 kgElvin
8
63 kgKessler
12
60 kgde Baat
13
56 kgMartin
15
57 kgMajerus
16
56 kgPitel
18
52 kgAllen
19
55 kgEdmondson
24
66 kgBujak
30
63 kgKoster
36
56 kgNilsson
40
58 kgBrzeźna
48
56 kgvan Neck
71
63 kg
Weight (KG) →
Result →
67
52
1
71
# | Rider | Weight (KG) |
---|---|---|
1 | VAN VLEUTEN Annemiek | 59 |
2 | OLDS Shelley | 54 |
3 | SPRATT Amanda | 55 |
5 | VAN DEN BROEK-BLAAK Chantal | 64 |
6 | SLAPPENDEL Iris | 67 |
7 | FERRAND-PRÉVOT Pauline | 53 |
8 | ELVIN Gracie | 63 |
12 | KESSLER Nina | 60 |
13 | DE BAAT Kim | 56 |
15 | MARTIN Lucy | 57 |
16 | MAJERUS Christine | 56 |
18 | PITEL Edwige | 52 |
19 | ALLEN Jessica | 55 |
24 | EDMONDSON Annette | 66 |
30 | BUJAK Eugenia | 63 |
36 | KOSTER Anouska | 56 |
40 | NILSSON Hanna | 58 |
48 | BRZEŹNA Paulina | 56 |
71 | VAN NECK Melissa | 63 |