Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 36
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Wiebes
1
60 kgKessler
5
60 kgKuijpers
7
73 kgHannes
8
51 kgNerlo
13
65 kgKastelijn
17
52 kgvan Houtum
19
55 kgNagengast
21
61 kgvan Alphen
22
51 kgLach
24
59 kgBeekhuis
26
58 kgKoster
28
56 kgvan der Hulst
35
66 kgOosterwoud
48
60 kgDemey
62
56 kgRooijakkers
64
58 kgHoffmann
70
62 kg
1
60 kgKessler
5
60 kgKuijpers
7
73 kgHannes
8
51 kgNerlo
13
65 kgKastelijn
17
52 kgvan Houtum
19
55 kgNagengast
21
61 kgvan Alphen
22
51 kgLach
24
59 kgBeekhuis
26
58 kgKoster
28
56 kgvan der Hulst
35
66 kgOosterwoud
48
60 kgDemey
62
56 kgRooijakkers
64
58 kgHoffmann
70
62 kg
Weight (KG) →
Result →
73
51
1
70
# | Rider | Weight (KG) |
---|---|---|
1 | WIEBES Lorena | 60 |
5 | KESSLER Nina | 60 |
7 | KUIJPERS Evy | 73 |
8 | HANNES Kaat | 51 |
13 | NERLO Aurela | 65 |
17 | KASTELIJN Yara | 52 |
19 | VAN HOUTUM Céline | 55 |
21 | NAGENGAST Fleur | 61 |
22 | VAN ALPHEN Aniek | 51 |
24 | LACH Marta | 59 |
26 | BEEKHUIS Teuntje | 58 |
28 | KOSTER Anouska | 56 |
35 | VAN DER HULST Amber | 66 |
48 | OOSTERWOUD Wendy | 60 |
62 | DEMEY Valerie | 56 |
64 | ROOIJAKKERS Pauliena | 58 |
70 | HOFFMANN Chantal | 62 |