Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.8 * weight - 13
This means that on average for every extra kilogram weight a rider loses 0.8 positions in the result.
Retailleau
1
64 kgNavarro
5
60 kgNurlykhassym
6
65 kgMainguenaud
7
63 kgFedorov
14
80 kgBarré
15
68 kgKhatpin
16
60 kgRodríguez
18
67 kgBrussenskiy
21
64 kgPlusquellec
34
66 kgJolly
37
70 kgGonçalves
39
55 kgKnecht
43
66 kgRosal
75
70 kgHessmann
78
78 kgBenech
87
65 kgParoz
100
60 kgMesserschmidt
109
68 kg
1
64 kgNavarro
5
60 kgNurlykhassym
6
65 kgMainguenaud
7
63 kgFedorov
14
80 kgBarré
15
68 kgKhatpin
16
60 kgRodríguez
18
67 kgBrussenskiy
21
64 kgPlusquellec
34
66 kgJolly
37
70 kgGonçalves
39
55 kgKnecht
43
66 kgRosal
75
70 kgHessmann
78
78 kgBenech
87
65 kgParoz
100
60 kgMesserschmidt
109
68 kg
Weight (KG) →
Result →
80
55
1
109
| # | Rider | Weight (KG) |
|---|---|---|
| 1 | RETAILLEAU Valentin | 64 |
| 5 | NAVARRO Gauthier | 60 |
| 6 | NURLYKHASSYM Nurbergen | 65 |
| 7 | MAINGUENAUD Tom | 63 |
| 14 | FEDOROV Yevgeniy | 80 |
| 15 | BARRÉ Louis | 68 |
| 16 | KHATPIN Nurzhan | 60 |
| 18 | RODRÍGUEZ Carlos | 67 |
| 21 | BRUSSENSKIY Gleb | 64 |
| 34 | PLUSQUELLEC Yann | 66 |
| 37 | JOLLY Maxime | 70 |
| 39 | GONÇALVES Hélder | 55 |
| 43 | KNECHT Noah | 66 |
| 75 | ROSAL Juanjo | 70 |
| 78 | HESSMANN Michel | 78 |
| 87 | BENECH Pierre | 65 |
| 100 | PAROZ Guillaume | 60 |
| 109 | MESSERSCHMIDT Jonas Fabian | 68 |