Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = 0.6 * weight - 28
This means that on average for every extra kilogram weight a rider loses 0.6 positions in the result.
Dufaux
1
60 kgPantani
2
58 kgZberg
3
72 kgCamenzind
4
62 kgJulich
5
68 kgBortolami
6
73 kgTotschnig
7
62 kgTafi
10
73 kgBoardman
11
70 kgLuttenberger
13
60 kgSchnider
14
65 kgJeker
15
72 kgRominger
18
65 kgRichard
19
67 kgZberg
21
69 kgMeier
23
69 kgJärmann
24
73 kgZucconi
25
63 kgMerckx
27
77 kg
1
60 kgPantani
2
58 kgZberg
3
72 kgCamenzind
4
62 kgJulich
5
68 kgBortolami
6
73 kgTotschnig
7
62 kgTafi
10
73 kgBoardman
11
70 kgLuttenberger
13
60 kgSchnider
14
65 kgJeker
15
72 kgRominger
18
65 kgRichard
19
67 kgZberg
21
69 kgMeier
23
69 kgJärmann
24
73 kgZucconi
25
63 kgMerckx
27
77 kg
Weight (KG) →
Result →
77
58
1
27
# | Rider | Weight (KG) |
---|---|---|
1 | DUFAUX Laurent | 60 |
2 | PANTANI Marco | 58 |
3 | ZBERG Beat | 72 |
4 | CAMENZIND Oscar | 62 |
5 | JULICH Bobby | 68 |
6 | BORTOLAMI Gianluca | 73 |
7 | TOTSCHNIG Georg | 62 |
10 | TAFI Andrea | 73 |
11 | BOARDMAN Chris | 70 |
13 | LUTTENBERGER Peter | 60 |
14 | SCHNIDER Daniel | 65 |
15 | JEKER Fabian | 72 |
18 | ROMINGER Tony | 65 |
19 | RICHARD Pascal | 67 |
21 | ZBERG Markus | 69 |
23 | MEIER Armin | 69 |
24 | JÄRMANN Rolf | 73 |
25 | ZUCCONI Pietro | 63 |
27 | MERCKX Axel | 77 |