Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 13
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Zülle
1
72 kgDufaux
2
60 kgGarzelli
3
62 kgZberg
4
72 kgSchnider
5
65 kgMeier
6
60 kgJeker
7
72 kgRubiera
8
69 kgArmstrong
9
72 kgGotti
10
65 kgMeier
11
69 kgLivingston
12
70 kgAtienza
13
60 kgMontgomery
14
62 kgZberg
15
69 kgJaksche
16
69 kgSavoldelli
17
72 kgSauser
18
65 kgHondo
20
73 kgAebersold
22
58 kgFrischknecht
25
69 kgHuser
26
65 kg
1
72 kgDufaux
2
60 kgGarzelli
3
62 kgZberg
4
72 kgSchnider
5
65 kgMeier
6
60 kgJeker
7
72 kgRubiera
8
69 kgArmstrong
9
72 kgGotti
10
65 kgMeier
11
69 kgLivingston
12
70 kgAtienza
13
60 kgMontgomery
14
62 kgZberg
15
69 kgJaksche
16
69 kgSavoldelli
17
72 kgSauser
18
65 kgHondo
20
73 kgAebersold
22
58 kgFrischknecht
25
69 kgHuser
26
65 kg
Weight (KG) →
Result →
73
58
1
26
# | Rider | Weight (KG) |
---|---|---|
1 | ZÜLLE Alex | 72 |
2 | DUFAUX Laurent | 60 |
3 | GARZELLI Stefano | 62 |
4 | ZBERG Beat | 72 |
5 | SCHNIDER Daniel | 65 |
6 | MEIER Roland | 60 |
7 | JEKER Fabian | 72 |
8 | RUBIERA José Luis | 69 |
9 | ARMSTRONG Lance | 72 |
10 | GOTTI Ivan | 65 |
11 | MEIER Armin | 69 |
12 | LIVINGSTON Kevin | 70 |
13 | ATIENZA Daniel | 60 |
14 | MONTGOMERY Sven | 62 |
15 | ZBERG Markus | 69 |
16 | JAKSCHE Jörg | 69 |
17 | SAVOLDELLI Paolo | 72 |
18 | SAUSER Christoph | 65 |
20 | HONDO Danilo | 73 |
22 | AEBERSOLD Niki | 58 |
25 | FRISCHKNECHT Thomas | 69 |
26 | HUSER Rolf | 65 |