Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0 * weight + 14
This means that on average for every extra kilogram weight a rider loses -0 positions in the result.
Viviani
1
67 kgGuardini
2
66 kgBazzana
3
63.5 kgSagan
4
78 kgPalini
5
67 kgBennati
6
71 kgSabatini
7
74 kgHaddi
8
63 kgMezgec
9
72 kgCanola
10
66 kgClarke
11
81 kgMancebo
12
64 kgRojas
13
70 kgWiśniowski
14
78 kgZurlo
15
70 kgBelkov
16
71 kgÁvila
17
61 kgJim
18
66 kgSchwarzmann
19
69 kgLatham
20
81 kgHenao
22
57 kg
1
67 kgGuardini
2
66 kgBazzana
3
63.5 kgSagan
4
78 kgPalini
5
67 kgBennati
6
71 kgSabatini
7
74 kgHaddi
8
63 kgMezgec
9
72 kgCanola
10
66 kgClarke
11
81 kgMancebo
12
64 kgRojas
13
70 kgWiśniowski
14
78 kgZurlo
15
70 kgBelkov
16
71 kgÁvila
17
61 kgJim
18
66 kgSchwarzmann
19
69 kgLatham
20
81 kgHenao
22
57 kg
Weight (KG) →
Result →
81
57
1
22
# | Rider | Weight (KG) |
---|---|---|
1 | VIVIANI Elia | 67 |
2 | GUARDINI Andrea | 66 |
3 | BAZZANA Alessandro | 63.5 |
4 | SAGAN Peter | 78 |
5 | PALINI Andrea | 67 |
6 | BENNATI Daniele | 71 |
7 | SABATINI Fabio | 74 |
8 | HADDI Soufiane | 63 |
9 | MEZGEC Luka | 72 |
10 | CANOLA Marco | 66 |
11 | CLARKE Will | 81 |
12 | MANCEBO Francisco | 64 |
13 | ROJAS José Joaquín | 70 |
14 | WIŚNIOWSKI Łukasz | 78 |
15 | ZURLO Federico | 70 |
16 | BELKOV Maxim | 71 |
17 | ÁVILA Edwin | 61 |
18 | JIM Songezo | 66 |
19 | SCHWARZMANN Michael | 69 |
20 | LATHAM Christopher | 81 |
22 | HENAO Sebastián | 57 |