Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 82
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Delaunay
5
70 kgGolliker
6
67 kgvan der Werff
15
60 kgVergouw
16
73 kgAbma
17
86 kgBaldacci
18
61 kgDuba
20
85 kgBonilla
24
63 kgPeace
25
64 kgPeters
26
75 kgHuitema
37
66 kgMulder
40
64 kgBrethouwer
42
69 kgvan den Eijnden
44
63 kgSchaper
48
69 kgWalker
54
52 kgWillemsen
56
80 kgLightfoot
60
57 kgJurriaans
62
70 kgvan Zuidam
66
63 kgSetz
68
65 kgGrömmel
75
70 kgStoneham
88
67 kg
5
70 kgGolliker
6
67 kgvan der Werff
15
60 kgVergouw
16
73 kgAbma
17
86 kgBaldacci
18
61 kgDuba
20
85 kgBonilla
24
63 kgPeace
25
64 kgPeters
26
75 kgHuitema
37
66 kgMulder
40
64 kgBrethouwer
42
69 kgvan den Eijnden
44
63 kgSchaper
48
69 kgWalker
54
52 kgWillemsen
56
80 kgLightfoot
60
57 kgJurriaans
62
70 kgvan Zuidam
66
63 kgSetz
68
65 kgGrömmel
75
70 kgStoneham
88
67 kg
Weight (KG) →
Result →
86
52
5
88
# | Rider | Weight (KG) |
---|---|---|
5 | DELAUNAY Estevan | 70 |
6 | GOLLIKER Joshua | 67 |
15 | VAN DER WERFF Thom | 60 |
16 | VERGOUW Julian | 73 |
17 | ABMA Elmar | 86 |
18 | BALDACCI Brandon | 61 |
20 | DUBA Maxime | 85 |
24 | BONILLA Pablo Sandino | 63 |
25 | PEACE Oliver | 64 |
26 | PETERS Marvin | 75 |
37 | HUITEMA Jasper | 66 |
40 | MULDER Martijn | 64 |
42 | BRETHOUWER Yorick | 69 |
44 | VAN DEN EIJNDEN Guus | 63 |
48 | SCHAPER Marijn | 69 |
54 | WALKER Zachary | 52 |
56 | WILLEMSEN Justus | 80 |
60 | LIGHTFOOT Mark | 57 |
62 | JURRIAANS Daan | 70 |
66 | VAN ZUIDAM Bas | 63 |
68 | SETZ Ramon | 65 |
75 | GRÖMMEL Rens | 70 |
88 | STONEHAM Angus | 67 |