Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.7 * weight + 92
This means that on average for every extra kilogram weight a rider loses -0.7 positions in the result.
Vergouw
1
73 kgDuba
2
85 kgBonilla
4
63 kgvan der Werff
7
60 kgGolliker
12
67 kgGrömmel
13
70 kgvan den Eijnden
16
63 kgPeters
19
75 kgBaldacci
23
61 kgHuitema
34
66 kgPeace
43
64 kgAbma
44
86 kgMulder
47
64 kgSchaper
49
69 kgDelaunay
50
70 kgBrethouwer
51
69 kgJurriaans
63
70 kgvan Zuidam
71
63 kgSetz
73
65 kgWalker
77
52 kgWillemsen
80
80 kgLightfoot
84
57 kgStoneham
87
67 kg
1
73 kgDuba
2
85 kgBonilla
4
63 kgvan der Werff
7
60 kgGolliker
12
67 kgGrömmel
13
70 kgvan den Eijnden
16
63 kgPeters
19
75 kgBaldacci
23
61 kgHuitema
34
66 kgPeace
43
64 kgAbma
44
86 kgMulder
47
64 kgSchaper
49
69 kgDelaunay
50
70 kgBrethouwer
51
69 kgJurriaans
63
70 kgvan Zuidam
71
63 kgSetz
73
65 kgWalker
77
52 kgWillemsen
80
80 kgLightfoot
84
57 kgStoneham
87
67 kg
Weight (KG) →
Result →
86
52
1
87
# | Rider | Weight (KG) |
---|---|---|
1 | VERGOUW Julian | 73 |
2 | DUBA Maxime | 85 |
4 | BONILLA Pablo Sandino | 63 |
7 | VAN DER WERFF Thom | 60 |
12 | GOLLIKER Joshua | 67 |
13 | GRÖMMEL Rens | 70 |
16 | VAN DEN EIJNDEN Guus | 63 |
19 | PETERS Marvin | 75 |
23 | BALDACCI Brandon | 61 |
34 | HUITEMA Jasper | 66 |
43 | PEACE Oliver | 64 |
44 | ABMA Elmar | 86 |
47 | MULDER Martijn | 64 |
49 | SCHAPER Marijn | 69 |
50 | DELAUNAY Estevan | 70 |
51 | BRETHOUWER Yorick | 69 |
63 | JURRIAANS Daan | 70 |
71 | VAN ZUIDAM Bas | 63 |
73 | SETZ Ramon | 65 |
77 | WALKER Zachary | 52 |
80 | WILLEMSEN Justus | 80 |
84 | LIGHTFOOT Mark | 57 |
87 | STONEHAM Angus | 67 |