Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.9 * weight + 102
This means that on average for every extra kilogram weight a rider loses -0.9 positions in the result.
Delaunay
1
70 kgAbma
2
86 kgGolliker
3
67 kgStoneham
8
67 kgvan der Werff
13
60 kgBaldacci
15
61 kgPeace
17
64 kgPeters
18
75 kgVergouw
20
73 kgWillemsen
23
80 kgDuba
41
85 kgLightfoot
43
57 kgJurriaans
46
70 kgBonilla
54
63 kgWalker
56
52 kgHuitema
60
66 kgMulder
62
64 kgvan Zuidam
64
63 kgSetz
68
65 kgBrethouwer
69
69 kgvan den Eijnden
71
63 kgSchaper
82
69 kgGrömmel
87
70 kg
1
70 kgAbma
2
86 kgGolliker
3
67 kgStoneham
8
67 kgvan der Werff
13
60 kgBaldacci
15
61 kgPeace
17
64 kgPeters
18
75 kgVergouw
20
73 kgWillemsen
23
80 kgDuba
41
85 kgLightfoot
43
57 kgJurriaans
46
70 kgBonilla
54
63 kgWalker
56
52 kgHuitema
60
66 kgMulder
62
64 kgvan Zuidam
64
63 kgSetz
68
65 kgBrethouwer
69
69 kgvan den Eijnden
71
63 kgSchaper
82
69 kgGrömmel
87
70 kg
Weight (KG) →
Result →
86
52
1
87
# | Rider | Weight (KG) |
---|---|---|
1 | DELAUNAY Estevan | 70 |
2 | ABMA Elmar | 86 |
3 | GOLLIKER Joshua | 67 |
8 | STONEHAM Angus | 67 |
13 | VAN DER WERFF Thom | 60 |
15 | BALDACCI Brandon | 61 |
17 | PEACE Oliver | 64 |
18 | PETERS Marvin | 75 |
20 | VERGOUW Julian | 73 |
23 | WILLEMSEN Justus | 80 |
41 | DUBA Maxime | 85 |
43 | LIGHTFOOT Mark | 57 |
46 | JURRIAANS Daan | 70 |
54 | BONILLA Pablo Sandino | 63 |
56 | WALKER Zachary | 52 |
60 | HUITEMA Jasper | 66 |
62 | MULDER Martijn | 64 |
64 | VAN ZUIDAM Bas | 63 |
68 | SETZ Ramon | 65 |
69 | BRETHOUWER Yorick | 69 |
71 | VAN DEN EIJNDEN Guus | 63 |
82 | SCHAPER Marijn | 69 |
87 | GRÖMMEL Rens | 70 |