Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.8 * weight + 170
This means that on average for every extra kilogram weight a rider loses -1.8 positions in the result.
Øxenberg
1
69 kgvan der Linden
3
73 kgVergouw
4
73 kgMolenaar
8
68 kgNagengast
18
62 kgŁątkowski
19
68 kgDerksen
24
69 kgKool
26
69 kgWiśniewski
33
68 kgHarvey
35
75 kgQuint
38
75 kgNuijens
39
80 kgGrömmel
47
70 kgJensen
50
71 kgSmit
52
59 kgMulder
54
64 kgWeber
62
77 kgSetz
68
65 kgUptegrove
70
68 kgvan Zuidam
88
63 kgRoks
90
60 kgvan Keulen
95
71 kgGeersing
108
65 kg
1
69 kgvan der Linden
3
73 kgVergouw
4
73 kgMolenaar
8
68 kgNagengast
18
62 kgŁątkowski
19
68 kgDerksen
24
69 kgKool
26
69 kgWiśniewski
33
68 kgHarvey
35
75 kgQuint
38
75 kgNuijens
39
80 kgGrömmel
47
70 kgJensen
50
71 kgSmit
52
59 kgMulder
54
64 kgWeber
62
77 kgSetz
68
65 kgUptegrove
70
68 kgvan Zuidam
88
63 kgRoks
90
60 kgvan Keulen
95
71 kgGeersing
108
65 kg
Weight (KG) →
Result →
80
59
1
108
# | Rider | Weight (KG) |
---|---|---|
1 | ØXENBERG Peter | 69 |
3 | VAN DER LINDEN Sjoerd | 73 |
4 | VERGOUW Julian | 73 |
8 | MOLENAAR Ko | 68 |
18 | NAGENGAST Ruud Junior | 62 |
19 | ŁĄTKOWSKI Dawid | 68 |
24 | DERKSEN Jente | 69 |
26 | KOOL Tobias | 69 |
33 | WIŚNIEWSKI Szymon | 68 |
35 | HARVEY Hugh | 75 |
38 | QUINT Antoine | 75 |
39 | NUIJENS Cas | 80 |
47 | GRÖMMEL Rens | 70 |
50 | JENSEN Nicklas Dyrholm | 71 |
52 | SMIT Stan | 59 |
54 | MULDER Martijn | 64 |
62 | WEBER Gino | 77 |
68 | SETZ Ramon | 65 |
70 | UPTEGROVE Ed | 68 |
88 | VAN ZUIDAM Bas | 63 |
90 | ROKS Jelle | 60 |
95 | VAN KEULEN Wessel | 71 |
108 | GEERSING Stijn | 65 |