Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -1.2 * weight + 131
This means that on average for every extra kilogram weight a rider loses -1.2 positions in the result.
Molenaar
5
68 kgØxenberg
7
69 kgUptegrove
13
68 kgHarvey
18
75 kgSmit
22
59 kgKool
24
69 kgNuijens
25
80 kgNagengast
27
62 kgJensen
32
71 kgGrömmel
34
70 kgVergouw
40
73 kgSetz
41
65 kgWeber
43
77 kgDerksen
47
69 kgŁątkowski
48
68 kgQuint
62
75 kgWiśniewski
64
68 kgRoks
72
60 kgMulder
78
64 kgvan der Linden
79
73 kgvan Zuidam
112
63 kgGeersing
125
65 kgvan Keulen
129
71 kg
5
68 kgØxenberg
7
69 kgUptegrove
13
68 kgHarvey
18
75 kgSmit
22
59 kgKool
24
69 kgNuijens
25
80 kgNagengast
27
62 kgJensen
32
71 kgGrömmel
34
70 kgVergouw
40
73 kgSetz
41
65 kgWeber
43
77 kgDerksen
47
69 kgŁątkowski
48
68 kgQuint
62
75 kgWiśniewski
64
68 kgRoks
72
60 kgMulder
78
64 kgvan der Linden
79
73 kgvan Zuidam
112
63 kgGeersing
125
65 kgvan Keulen
129
71 kg
Weight (KG) →
Result →
80
59
5
129
# | Rider | Weight (KG) |
---|---|---|
5 | MOLENAAR Ko | 68 |
7 | ØXENBERG Peter | 69 |
13 | UPTEGROVE Ed | 68 |
18 | HARVEY Hugh | 75 |
22 | SMIT Stan | 59 |
24 | KOOL Tobias | 69 |
25 | NUIJENS Cas | 80 |
27 | NAGENGAST Ruud Junior | 62 |
32 | JENSEN Nicklas Dyrholm | 71 |
34 | GRÖMMEL Rens | 70 |
40 | VERGOUW Julian | 73 |
41 | SETZ Ramon | 65 |
43 | WEBER Gino | 77 |
47 | DERKSEN Jente | 69 |
48 | ŁĄTKOWSKI Dawid | 68 |
62 | QUINT Antoine | 75 |
64 | WIŚNIEWSKI Szymon | 68 |
72 | ROKS Jelle | 60 |
78 | MULDER Martijn | 64 |
79 | VAN DER LINDEN Sjoerd | 73 |
112 | VAN ZUIDAM Bas | 63 |
125 | GEERSING Stijn | 65 |
129 | VAN KEULEN Wessel | 71 |