Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -2.7 * weight + 231
This means that on average for every extra kilogram weight a rider loses -2.7 positions in the result.
Vergouw
1
73 kgvan der Linden
2
73 kgHarvey
3
75 kgKool
9
69 kgDerksen
10
69 kgSetz
11
65 kgMolenaar
14
68 kgØxenberg
27
69 kgŁątkowski
32
68 kgNagengast
38
62 kgGrömmel
39
70 kgNuijens
43
80 kgQuint
54
75 kgMulder
61
64 kgJensen
62
71 kgvan Keulen
66
71 kgWiśniewski
69
68 kgWeber
70
77 kgSmit
75
59 kgvan Zuidam
99
63 kgRoks
103
60 kgUptegrove
106
68 kgGeersing
118
65 kg
1
73 kgvan der Linden
2
73 kgHarvey
3
75 kgKool
9
69 kgDerksen
10
69 kgSetz
11
65 kgMolenaar
14
68 kgØxenberg
27
69 kgŁątkowski
32
68 kgNagengast
38
62 kgGrömmel
39
70 kgNuijens
43
80 kgQuint
54
75 kgMulder
61
64 kgJensen
62
71 kgvan Keulen
66
71 kgWiśniewski
69
68 kgWeber
70
77 kgSmit
75
59 kgvan Zuidam
99
63 kgRoks
103
60 kgUptegrove
106
68 kgGeersing
118
65 kg
Weight (KG) →
Result →
80
59
1
118
# | Rider | Weight (KG) |
---|---|---|
1 | VERGOUW Julian | 73 |
2 | VAN DER LINDEN Sjoerd | 73 |
3 | HARVEY Hugh | 75 |
9 | KOOL Tobias | 69 |
10 | DERKSEN Jente | 69 |
11 | SETZ Ramon | 65 |
14 | MOLENAAR Ko | 68 |
27 | ØXENBERG Peter | 69 |
32 | ŁĄTKOWSKI Dawid | 68 |
38 | NAGENGAST Ruud Junior | 62 |
39 | GRÖMMEL Rens | 70 |
43 | NUIJENS Cas | 80 |
54 | QUINT Antoine | 75 |
61 | MULDER Martijn | 64 |
62 | JENSEN Nicklas Dyrholm | 71 |
66 | VAN KEULEN Wessel | 71 |
69 | WIŚNIEWSKI Szymon | 68 |
70 | WEBER Gino | 77 |
75 | SMIT Stan | 59 |
99 | VAN ZUIDAM Bas | 63 |
103 | ROKS Jelle | 60 |
106 | UPTEGROVE Ed | 68 |
118 | GEERSING Stijn | 65 |