Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -3.2 * weight + 258
This means that on average for every extra kilogram weight a rider loses -3.2 positions in the result.
Harvey
1
75 kgUptegrove
2
68 kgNuijens
4
80 kgKool
5
69 kgNagengast
7
62 kgGrömmel
8
70 kgJensen
9
71 kgVergouw
10
73 kgDerksen
18
69 kgvan der Linden
23
73 kgvan Keulen
25
71 kgMulder
26
64 kgQuint
37
75 kgWiśniewski
45
68 kgŁątkowski
46
68 kgWeber
47
77 kgvan Zuidam
57
63 kgSmit
62
59 kgØxenberg
63
69 kgSetz
89
65 kgRoks
101
60 kgGeersing
108
65 kgMolenaar
109
68 kg
1
75 kgUptegrove
2
68 kgNuijens
4
80 kgKool
5
69 kgNagengast
7
62 kgGrömmel
8
70 kgJensen
9
71 kgVergouw
10
73 kgDerksen
18
69 kgvan der Linden
23
73 kgvan Keulen
25
71 kgMulder
26
64 kgQuint
37
75 kgWiśniewski
45
68 kgŁątkowski
46
68 kgWeber
47
77 kgvan Zuidam
57
63 kgSmit
62
59 kgØxenberg
63
69 kgSetz
89
65 kgRoks
101
60 kgGeersing
108
65 kgMolenaar
109
68 kg
Weight (KG) →
Result →
80
59
1
109
# | Rider | Weight (KG) |
---|---|---|
1 | HARVEY Hugh | 75 |
2 | UPTEGROVE Ed | 68 |
4 | NUIJENS Cas | 80 |
5 | KOOL Tobias | 69 |
7 | NAGENGAST Ruud Junior | 62 |
8 | GRÖMMEL Rens | 70 |
9 | JENSEN Nicklas Dyrholm | 71 |
10 | VERGOUW Julian | 73 |
18 | DERKSEN Jente | 69 |
23 | VAN DER LINDEN Sjoerd | 73 |
25 | VAN KEULEN Wessel | 71 |
26 | MULDER Martijn | 64 |
37 | QUINT Antoine | 75 |
45 | WIŚNIEWSKI Szymon | 68 |
46 | ŁĄTKOWSKI Dawid | 68 |
47 | WEBER Gino | 77 |
57 | VAN ZUIDAM Bas | 63 |
62 | SMIT Stan | 59 |
63 | ØXENBERG Peter | 69 |
89 | SETZ Ramon | 65 |
101 | ROKS Jelle | 60 |
108 | GEERSING Stijn | 65 |
109 | MOLENAAR Ko | 68 |