Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.6 * weight + 98
This means that on average for every extra kilogram weight a rider loses -0.6 positions in the result.
Øxenberg
2
69 kgUptegrove
4
68 kgWiśniewski
10
68 kgvan der Linden
11
73 kgNagengast
13
62 kgŁątkowski
20
68 kgVergouw
21
73 kgDerksen
31
69 kgNuijens
38
80 kgKool
39
69 kgQuint
42
75 kgJensen
54
71 kgSmit
60
59 kgMolenaar
61
68 kgMulder
76
64 kgGeersing
79
65 kgHarvey
82
75 kgRoks
88
60 kgGrömmel
91
70 kgvan Zuidam
93
63 kgvan Keulen
102
71 kgSetz
103
65 kgWeber
110
77 kg
2
69 kgUptegrove
4
68 kgWiśniewski
10
68 kgvan der Linden
11
73 kgNagengast
13
62 kgŁątkowski
20
68 kgVergouw
21
73 kgDerksen
31
69 kgNuijens
38
80 kgKool
39
69 kgQuint
42
75 kgJensen
54
71 kgSmit
60
59 kgMolenaar
61
68 kgMulder
76
64 kgGeersing
79
65 kgHarvey
82
75 kgRoks
88
60 kgGrömmel
91
70 kgvan Zuidam
93
63 kgvan Keulen
102
71 kgSetz
103
65 kgWeber
110
77 kg
Weight (KG) →
Result →
80
59
2
110
# | Rider | Weight (KG) |
---|---|---|
2 | ØXENBERG Peter | 69 |
4 | UPTEGROVE Ed | 68 |
10 | WIŚNIEWSKI Szymon | 68 |
11 | VAN DER LINDEN Sjoerd | 73 |
13 | NAGENGAST Ruud Junior | 62 |
20 | ŁĄTKOWSKI Dawid | 68 |
21 | VERGOUW Julian | 73 |
31 | DERKSEN Jente | 69 |
38 | NUIJENS Cas | 80 |
39 | KOOL Tobias | 69 |
42 | QUINT Antoine | 75 |
54 | JENSEN Nicklas Dyrholm | 71 |
60 | SMIT Stan | 59 |
61 | MOLENAAR Ko | 68 |
76 | MULDER Martijn | 64 |
79 | GEERSING Stijn | 65 |
82 | HARVEY Hugh | 75 |
88 | ROKS Jelle | 60 |
91 | GRÖMMEL Rens | 70 |
93 | VAN ZUIDAM Bas | 63 |
102 | VAN KEULEN Wessel | 71 |
103 | SETZ Ramon | 65 |
110 | WEBER Gino | 77 |