Regression line on weight and result
With regression analysis we can check if there is a relationship between a dependent (also called outcome variable) and an independent variable. In this statistic, the relationship between the weight of a rider and the result (outcome) is investigated.
The formula for the regression line on the riders in the result is as follows:
The formula for the regression line on the riders in the result is as follows:
result = -0.1 * weight + 20
This means that on average for every extra kilogram weight a rider loses -0.1 positions in the result.
Bauhaus
1
75 kgBouhanni
2
65 kgCosta
3
69 kgBonifazio
4
72 kgBarbero
5
66 kgHaussler
6
74 kgJanse van Rensburg
7
74 kgReguigui
8
69 kgDupont
9
72 kgJensen
10
67 kgDebusschere
11
77 kgSlagter
12
57 kgMalucelli
13
68 kgAular
14
65 kgKron
15
63 kgTerpstra
17
75 kgSoupe
18
70 kgTrarieux
19
71 kgCarstensen
20
69 kg
1
75 kgBouhanni
2
65 kgCosta
3
69 kgBonifazio
4
72 kgBarbero
5
66 kgHaussler
6
74 kgJanse van Rensburg
7
74 kgReguigui
8
69 kgDupont
9
72 kgJensen
10
67 kgDebusschere
11
77 kgSlagter
12
57 kgMalucelli
13
68 kgAular
14
65 kgKron
15
63 kgTerpstra
17
75 kgSoupe
18
70 kgTrarieux
19
71 kgCarstensen
20
69 kg
Weight (KG) →
Result →
77
57
1
20
# | Rider | Weight (KG) |
---|---|---|
1 | BAUHAUS Phil | 75 |
2 | BOUHANNI Nacer | 65 |
3 | COSTA Rui | 69 |
4 | BONIFAZIO Niccolò | 72 |
5 | BARBERO Carlos | 66 |
6 | HAUSSLER Heinrich | 74 |
7 | JANSE VAN RENSBURG Reinardt | 74 |
8 | REGUIGUI Youcef | 69 |
9 | DUPONT Timothy | 72 |
10 | JENSEN August | 67 |
11 | DEBUSSCHERE Jens | 77 |
12 | SLAGTER Tom-Jelte | 57 |
13 | MALUCELLI Matteo | 68 |
14 | AULAR Orluis | 65 |
15 | KRON Andreas | 63 |
17 | TERPSTRA Niki | 75 |
18 | SOUPE Geoffrey | 70 |
19 | TRARIEUX Julien | 71 |
20 | CARSTENSEN Lucas | 69 |